Statistical Issues in AIDS Research
艾滋病研究中的统计问题
基本信息
- 批准号:9897511
- 负责人:
- 金额:$ 74.17万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:1989
- 资助国家:美国
- 起止时间:1989-09-30 至 2024-04-30
- 项目状态:已结题
- 来源:
- 关键词:AIDS preventionAIDS/HIV problemAcquired Immunodeficiency SyndromeAddressAdherenceAreaBiological AssayBiometryCellsClinical TreatmentClinical TrialsComplexDataData AnalysesData SetDevelopmentDifferential EquationDiseaseDocumentationEpidemicFlow CytometryHIVHIV InfectionsHIV prevention trialHIV vaccineIncidenceIndividualInfectionInformation NetworksLaboratoriesMapsMathematicsMeasuresMethodologyMethodsModelingModernizationOutcomePathway AnalysisPerformancePolicy MakerPopulationPrevalencePreventionProceduresProcessProductionPropertyReportingReproducibilityResearchResearch PersonnelResolutionResourcesRunningSafetySpatial DistributionStainsStatistical MethodsStructureSurvival AnalysisTimeTime trendUncertaintyVaccine ResearchViral Load resultWorkbasecausal modelclinical implementationcytokinedesigndynamic systemflexibilityhuman subjectimplementation researchimplementation trialinnovationlatent HIV reservoirmultiple data sourcesnovelnovel strategiespre-exposure prophylaxispreventsemiparametricsimulationsurveillance studytheoriestooltransmission processtreatment trialtrial designuser friendly softwarevaccine developmentvaccine trial
项目摘要
Thirty years after identification of HIV, the AIDS epidemic continues with an estimated 37 million
individuals currently infected worldwide and 1.8 million new infections each year. Research to prevent
and treat HIV infection has grown increasingly sophisticated and the analytic challenges have become
correspondingly complex. This application is intended to address timely and important statistical issues
in HIV/AIDS research. In particular, novel statistical methods will be developed for (i) analysis of data
from HIV clinical trials, including methods for implementation trials, trials of pre-exposure prophylaxis
(PrEP), and vaccine studies (ii) optimal design and analysis of surveillance studies that are necessary
to characterize the HIV epidemic, and (iii) analysis of data from key laboratory assays used in HIV cure
and vaccine research.
First, statistical methods are proposed that address key challenges in current HIV prevention,
treatment and implementation trials. The approaches include causal modeling and model-free/model-
agnostic methods that remove the need for complex modeling assumptions. The proposed methods
have broad applicability to clinical and implementation studies of HIV/AIDS as well as other fields.
Second, statistical methods are proposed to help characterize and describe key features of the HIV
epidemic. These include new approaches to spatial-temporal modeling that can provide fine-scale
maps (with uncertainty information) of HIV prevalence, incidence, percent suppressed, and other
measures, as well as a novel approach to combining the (stochastic) counting process approach to
survival analysis with (deterministic) differential equations to analyze interactive and dynamic systems,
such as socio-sexual networks. These methods have the potential to provide critical guidance for
optimizing the distribution of treatment and prevention resources. Finally, the proposed research will
investigate statistical methods for the analysis of key laboratory assays used in cure and vaccine
studies, including the quantitative viral load outgrowth assay used to quantify the size of the latent HIV
reservoir, and the intra-cellular staining flow-cytometry-based assay used in vaccine research to
quantify cytokine production and accumulation after cell stimulation.
The proposed research reflects the extensive and ongoing involvement of the investigators in
the field of HIV/AIDS research. The statistical problems addressed are motivated by applications in key
areas of HIV research. The solutions outlined are highly innovative and directly applicable to current
scientific research in vaccine development, HIV prevention trials, implementation research, and other
HIV/AIDS related studies.
HIV 确诊 30 年后,艾滋病仍在流行,估计有 3700 万人感染艾滋病
目前全世界有180万新感染者。研究预防
和治疗艾滋病毒感染变得越来越复杂,分析挑战也变得越来越复杂
相应地复杂。该应用程序旨在解决及时且重要的统计问题
从事艾滋病毒/艾滋病研究。特别是,将开发新的统计方法用于(i)数据分析
来自艾滋病毒临床试验,包括实施试验方法、暴露前预防试验
(PrEP) 和疫苗研究 (ii) 必要的监测研究的优化设计和分析
描述艾滋病毒流行的特征,以及 (iii) 分析艾滋病毒治疗中使用的关键实验室检测的数据
和疫苗研究。
首先,提出了解决当前艾滋病毒预防中的关键挑战的统计方法,
治疗和实施试验。这些方法包括因果建模和无模型/模型
不可知论的方法消除了对复杂建模假设的需要。提出的方法
对艾滋病毒/艾滋病以及其他领域的临床和实施研究具有广泛的适用性。
其次,提出了统计方法来帮助表征和描述艾滋病毒的关键特征
流行性。其中包括时空建模的新方法,可以提供精细的尺度
HIV 患病率、发病率、抑制百分比和其他信息的地图(带有不确定性信息)
措施,以及一种将(随机)计数过程方法与
使用(确定性)微分方程进行生存分析,以分析交互式和动态系统,
例如社会性网络。这些方法有可能为以下方面提供关键指导:
优化救治资源配置。最后,拟议的研究将
研究用于分析治疗和疫苗中使用的关键实验室测定的统计方法
研究,包括用于量化潜伏 HIV 大小的定量病毒载量生长测定
储库,以及疫苗研究中使用的基于细胞内染色流式细胞术的测定
量化细胞刺激后细胞因子的产生和积累。
拟议的研究反映了研究人员广泛且持续的参与
艾滋病毒/艾滋病研究领域。所解决的统计问题是由关键应用程序激发的
艾滋病毒研究领域。概述的解决方案具有高度创新性,可直接适用于当前
疫苗开发、艾滋病毒预防试验、实施研究等方面的科学研究
艾滋病毒/艾滋病相关研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JAMES P HUGHES其他文献
JAMES P HUGHES的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JAMES P HUGHES', 18)}}的其他基金
PHOSPHORYLATION OF LIPOCORTINS BY PROLACTIN AND IL-2
催乳素和 IL-2 磷酸化脂皮质素
- 批准号:
3437899 - 财政年份:1989
- 资助金额:
$ 74.17万 - 项目类别:














{{item.name}}会员




