Stem cell oxygenation and ischemic tissue regeneration
干细胞氧合和缺血组织再生
基本信息
- 批准号:9768533
- 负责人:
- 金额:$ 38.55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-08-22 至 2021-07-31
- 项目状态:已结题
- 来源:
- 关键词:AffectAnatomyBone MarrowCell SurvivalCellsDataDifferentiation and GrowthEndothelial CellsEndotheliumEngraftmentGoalsGrowth FactorHindlimbHydrogelsImplantIn VitroInferiorInsulin-Like Growth Factor IIschemiaLimb structureMesenchymal Stem CellsModelingMonitorMuscleMuscle FibersNatural regenerationOxygenPeripheral arterial diseasePlatelet-Derived Growth FactorPrincipal InvestigatorReactive Oxygen SpeciesResearchRoleSignal PathwaySkeletal MuscleStem cellsSystemTestingTissuesTreatment EfficacyVascularizationangiogenesisbaseblood perfusioncell typedensityefficacy testingexperienceimprovedin vivoinnovationlimb regenerationmortalitymouse modelmuscle regenerationnovelparacrineprogramsrepairedstem cell therapytissue regeneration
项目摘要
Program Director/Principal Investigator (Last, First, Middle): GUAN, JIANJUN
Project Summary
Critical limb ischemia (CLI) is a severe peripheral artery disease with high rates of limb loss and mortality. It is
featured by low blood perfusion, extensive tissue ischemia, and degenerated skeletal muscle. Quick vascularization
to restore blood perfusion, and fast muscle regeneration to restore normal function, represent the optimal goals for
CLI treatment. Currently there is no efficient treatment available, although stem cell therapy is one of the most
promising strategies. Most of stem cell types promote vascularization and muscle regeneration mainly by paracrine
effects while some may also differentiate into endothelial and skeletal muscle cells. However, current stem cell
therapy experiences low efficacy largely due to inferior cell survival and paracrine effects under the extremely low
oxygen condition (<1%) of ischemic limbs. In this project, we propose a new cell delivery system that continuously
releases appropriate concentration of O2 to simultaneously improve stem cell survival and paracrine effects,
resulting in quick vascularization and muscle regeneration. Paracrine effects concurrently provide multiple growth
factors critical for vascularization and muscle regeneration, which cannot be readily achieved by growth factor
therapy.
In our preliminary studies, we have created a hydrogel-based cell delivery system that releases O2. When tested
using bone marrow-derived mesenchymal stem cells (MSCs), the released O2 increased cell survival under
ischemic conditions in vitro without increasing reactive oxygen species (ROS) content. It also upregulated MSC
paracrine effects especially in terms of secreting proangiogenic/promyogenic growth factors like PDGF and IGF-1.
After implanting into ischemic limbs, the O2 releasing cell delivery system not only augmented MSC survival, but
also fully restored blood perfusion and muscle contractility in 4 weeks. The contribution of MSCs to vascularization
is mainly from paracrine effects as only a low percentage of cells were differentiated into endothelial cells.
Meanwhile, both MSC paracrine effects and myogenic differentiation contributed to muscle regeneration. These
preliminary data suggest that increasing both MSC survival and paracrine effects can significantly enhance
vascularization and muscle regeneration in ischemic limbs. Yet, cell survival and paracrine effects do not always
increase concurrently.
Based on our preliminary studies and above discussion, we hypothesize that stem cell delivery systems with
optimal O2 release profiles that simultaneously increase MSC survival and paracrine effects, will significantly
accelerate vascularization and muscle regeneration in ischemic limbs.
Aim #1 will test the hypothesis that optimal O2 release profiles will promote MSC survival and paracrine effects
under ischemic conditions.
Aim #2 will test efficacy of the created cell delivery systems using a model of hindlimb ischemia.
This project is innovative because it develops a safe and long-term O2 release system to establish the role,
mechanism, and efficacy of controlled O2 release in augmenting both stem cell survival and paracrine effects in
ischemic tissues for accelerated regeneration. The proposed stem cell delivery system is also translational.
OMB No. 0925-0001/0002 (Rev. 03/16 Approved Through 10/31/2018) Page Continuation Format Page
项目负责人/主要研究者(末、首、中):关健军
项目摘要
严重肢体缺血(CLI)是一种严重的外周动脉疾病,肢体丧失率和死亡率很高。是
其特征在于低血液灌注、广泛的组织缺血和退化的骨骼肌。快速血管化
恢复血液灌注和快速肌肉再生以恢复正常功能,代表了
CLI治疗。目前还没有有效的治疗方法,尽管干细胞治疗是最有效的治疗方法之一。
有前途的战略。大多数类型的干细胞主要通过旁分泌促进血管化和肌肉再生
一些细胞还可以分化为内皮细胞和骨骼肌细胞。目前,干细胞
治疗经历低的功效,主要是由于在极低的细胞存活率和旁分泌效应下,
缺血肢体氧合情况<1%。在这个项目中,我们提出了一种新的细胞输送系统,可以持续
释放适当浓度的O2以同时提高干细胞存活和旁分泌效应,
导致快速血管化和肌肉再生。旁分泌效应同时提供多重生长
血管形成和肌肉再生的关键因素,这不能通过生长因子容易地实现
疗法
在我们的初步研究中,我们已经创建了一个基于水凝胶的细胞输送系统,释放O2。测试时
使用骨髓来源的间充质干细胞(MSC),释放的O2增加了细胞存活,
在体外缺血条件下,不增加活性氧(ROS)含量。它还上调了MSC
旁分泌作用,特别是在分泌促血管生成/促肌生成生长因子如PDGF和IGF-1方面。
在植入缺血肢体后,O2释放细胞递送系统不仅增加了MSC的存活,
在4周内也完全恢复了血液灌注和肌肉收缩力。骨髓间充质干细胞对血管化的作用
主要来自旁分泌效应,因为只有低百分比的细胞分化为内皮细胞。
同时,MSC的旁分泌效应和肌源性分化有助于肌肉再生。这些
初步数据表明,增加MSC存活率和旁分泌效应可以显著增强
血管化和肌肉再生。然而,细胞存活和旁分泌效应并不总是
同时增加。
基于我们的初步研究和上述讨论,我们假设,
同时增加MSC存活和旁分泌效应的最佳O2释放曲线,将显著
促进缺血肢体血管化和肌肉再生。
目的#1将检验最佳O2释放曲线将促进MSC存活和旁分泌效应的假设
在局部缺血的情况下。
目标#2将使用后肢缺血模型测试所创建的细胞递送系统的功效。
这个项目是创新的,因为它开发了一个安全和长期的O2释放系统,以建立作用,
机制和控制O2释放在增加干细胞存活和旁分泌效应中的功效。
缺血组织加速再生。所提出的干细胞递送系统也是翻译的。
OMB编号0925-0001/0002(2016年3月修订版,批准至2018年10月31日)
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jianjun Guan其他文献
Jianjun Guan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jianjun Guan', 18)}}的其他基金
Targeted delivery of a proangiogenic and promyogenic protein for regeneration of diabetic ischemic limbs
靶向递送促血管生成和促肌生成蛋白以促进糖尿病缺血肢体的再生
- 批准号:
10616819 - 财政年份:2022
- 资助金额:
$ 38.55万 - 项目类别:
Targeted delivery of a proangiogenic and promyogenic protein for regeneration of diabetic ischemic limbs
靶向递送促血管生成和促肌生成蛋白以促进糖尿病缺血肢体的再生
- 批准号:
10467873 - 财政年份:2022
- 资助金额:
$ 38.55万 - 项目类别:
Regenerative wound dressings for accelerating diabetic wound healing
加速糖尿病伤口愈合的再生伤口敷料
- 批准号:
10518977 - 财政年份:2022
- 资助金额:
$ 38.55万 - 项目类别:
Regenerative wound dressings for accelerating diabetic wound healing
加速糖尿病伤口愈合的再生伤口敷料
- 批准号:
10684878 - 财政年份:2022
- 资助金额:
$ 38.55万 - 项目类别:
Targeting angiogenesis for fracture nonunion treatment under inflammatory diseases
靶向血管生成治疗炎症性疾病下的骨折不愈合
- 批准号:
10437928 - 财政年份:2020
- 资助金额:
$ 38.55万 - 项目类别:
Targeting angiogenesis for fracture nonunion treatment under inflammatory diseases
靶向血管生成治疗炎症性疾病下的骨折不愈合
- 批准号:
10259738 - 财政年份:2020
- 资助金额:
$ 38.55万 - 项目类别:
Targeting angiogenesis for fracture nonunion treatment under inflammatory diseases
靶向血管生成治疗炎症性疾病下的骨折不愈合
- 批准号:
10030432 - 财政年份:2020
- 资助金额:
$ 38.55万 - 项目类别:
POLYMERIC ELECTRON PARAMAGNETIC RESONANCE PROBES FOR REAL-TIME MONITORING OF TISSUE VASCULARIZATION
用于实时监测组织血管化的聚合物电子顺磁共振探头
- 批准号:
9811147 - 财政年份:2019
- 资助金额:
$ 38.55万 - 项目类别:
Preservation and Vascularization of Cardiac Extracellular Matrix after Myocardial Infarction
心肌梗死后心脏细胞外基质的保存和血管化
- 批准号:
10335142 - 财政年份:2019
- 资助金额:
$ 38.55万 - 项目类别:
Preservation and Vascularization of Cardiac Extracellular Matrix after Myocardial Infarction
心肌梗死后心脏细胞外基质的保存和血管化
- 批准号:
10094074 - 财政年份:2019
- 资助金额:
$ 38.55万 - 项目类别:
相似海外基金
Linking Epidermis and Mesophyll Signalling. Anatomy and Impact in Photosynthesis.
连接表皮和叶肉信号传导。
- 批准号:
EP/Z000882/1 - 财政年份:2024
- 资助金额:
$ 38.55万 - 项目类别:
Fellowship
Digging Deeper with AI: Canada-UK-US Partnership for Next-generation Plant Root Anatomy Segmentation
利用人工智能进行更深入的挖掘:加拿大、英国、美国合作开发下一代植物根部解剖分割
- 批准号:
BB/Y513908/1 - 财政年份:2024
- 资助金额:
$ 38.55万 - 项目类别:
Research Grant
Simultaneous development of direct-view and video laryngoscopes based on the anatomy and physiology of the newborn
根据新生儿解剖生理同步开发直视喉镜和视频喉镜
- 批准号:
23K11917 - 财政年份:2023
- 资助金额:
$ 38.55万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Genetics of Extreme Phenotypes of OSA and Associated Upper Airway Anatomy
OSA 极端表型的遗传学及相关上呼吸道解剖学
- 批准号:
10555809 - 财政年份:2023
- 资助金额:
$ 38.55万 - 项目类别:
computational models and analysis of the retinal anatomy and potentially physiology
视网膜解剖学和潜在生理学的计算模型和分析
- 批准号:
2825967 - 财政年份:2023
- 资助金额:
$ 38.55万 - 项目类别:
Studentship
Computational comparative anatomy: Translating between species in neuroscience
计算比较解剖学:神经科学中物种之间的翻译
- 批准号:
BB/X013227/1 - 财政年份:2023
- 资助金额:
$ 38.55万 - 项目类别:
Research Grant
Doctoral Dissertation Research: Social and ecological influences on brain anatomy
博士论文研究:社会和生态对大脑解剖学的影响
- 批准号:
2235348 - 财政年份:2023
- 资助金额:
$ 38.55万 - 项目类别:
Standard Grant
Development of a novel visualization, labeling, communication and tracking engine for human anatomy.
开发一种新颖的人体解剖学可视化、标签、通信和跟踪引擎。
- 批准号:
10761060 - 财政年份:2023
- 资助金额:
$ 38.55万 - 项目类别:
Understanding the functional anatomy of nociceptive spinal output neurons
了解伤害性脊髓输出神经元的功能解剖结构
- 批准号:
10751126 - 财政年份:2023
- 资助金额:
$ 38.55万 - 项目类别:
The Anatomy of Online Reviews: Evidence from the Steam Store
在线评论剖析:来自 Steam 商店的证据
- 批准号:
2872725 - 财政年份:2023
- 资助金额:
$ 38.55万 - 项目类别:
Studentship