EMR-Linked Biobank for Translational Genomics
用于转化基因组学的 EMR 关联生物库
基本信息
- 批准号:9515974
- 负责人:
- 金额:$ 87.12万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-01 至 2020-08-31
- 项目状态:已结题
- 来源:
- 关键词:AdultAlgorithmsAmbulatory CareAreaAttitudeCandidate Disease GeneCaringCatchment AreaChildClinicalCommunicationComputerized Medical RecordConsentCountyCystic Fibrosis Transmembrane Conductance RegulatorDataDepositionDevelopmentDiagnosisDiseaseDreamsEconomic ModelsEcosystemElectronic Health RecordElectronic Medical Records and Genomics NetworkEnsureEnvironmentFamilial HypercholesterolemiaFamilial diseaseFamilyFamily memberFoundationsFunding OpportunitiesGenerationsGenesGenomic medicineGenomicsGenotypeGeographyGoalsGroup PracticeHealthHealth InsuranceHealth care facilityHealth systemHealthcareHealthcare SystemsIndividualInformation SystemsInstitute of Medicine (U.S.)Integrated Health Care SystemsKnowledgeLeadLeadershipLearningLinkLipidsMachine LearningMedicalMedicineMethodsOutcome StudyParticipantPatient CarePatientsPennsylvaniaPhasePhenotypePhysiciansPlayPopulationProcessPrognostic FactorProviderPublic HealthRecommendationResearchResearch InfrastructureResearch PersonnelResourcesRiskRoleRuralRural PopulationSafetySeverity of illnessSiteStrategic PlanningSystemTechniquesTestingTreatment outcomeUnited StatesValidationVariantbasebiobankcase findingchronic rhinosinusitisclinical careclinical practiceclinically relevantdensitydesignepidemiology studyexperiencegene environment interactiongenetic associationgenetic epidemiologygenetic variantgenotyped patientsimplementation researchimplementation strategyinnovationinpatient serviceinterestmeetingsnovelnovel strategiespersonalized health carephase 3 studyphenomepopulation basedprogramspublic health relevancescreeningtooltraittranslational genomicstreatment response
项目摘要
DESCRIPTION (provided by applicant): Medical care informed by genomic information is beginning to move into clinical practice. The Electronic Medical Records and Genomics (eMERGE) network through its initial phases has provided much of the groundwork for this transformation. The Geisinger Health System project, "EMR-Linked Biobank for Translational Genomics" intends to build on the knowledge and experience from eMERGE phase II to accelerate discovery and implementation while expanding our understanding of the sociocultural implications of genomics in medicine. We will accomplish this goal through three specific aims: 1) Use existing biospecimens, genotype and sequence data and EMR-generated phenotypes for discovery in the proposed disorders: familial hypercholesterolemia and chronic rhinosinusitis, 2) Develop and test approaches for implementation of genomic information in clinical practice, 3) Explore, develop and implement novel approaches for family-centered communication around clinically relevant genomic results. We currently have over 60,000 patients broadly consented for research with a large and increasing proportion consented for return of results and deposition in the electronic health record. Over 18,000 patients are genotyped on high density platforms. Our two proposed phenotypes, familial hypercholesterolemia (FH) and chronic rhinosinusitis (CRS) were chosen because both conditions have a significant public health impact in the United States, but they are also ideally suited to the specific aims of the project. They provide opportunities for innovation and extension of current eMERGE methods. While many of these innovations will take advantage of the sequencing done as part of the project, there are several other areas emphasized in the funding opportunity that will broaden the scope of eMERGE research. One of the areas of emphasis for eMERGE III is exploring the familial return of actionable results. FH is well suited to this, as the current clinical recommendation is cascade testing of family members for all diagnosed patients. Currently this relies on the patient to contact at risk family members, but this is less than optimal. We will explore this issue using qualitative and quantitative methods and use the results to design and test novel family communication strategies. Gene-environment interactions play an important role in the development and severity of disease. These are very difficult to study. We propose novel approaches that leverage the assets of Geisinger Health System and the eMERGE Network to develop and apply methods to extend existing projects that study the impact of environment on CRS. This would include the first large scale environment-wide association studies (EWAS). Finally, we propose to lead efforts to apply the tools of economic modeling and analysis to eMERGE projects to begin to quantify the value of implementation of genomic medicine in the US healthcare system. These proposed innovations will magnify the already significant impact that the eMERGE program has had in moving genomic medicine from a dream to a reality.
描述(由申请人提供):基于基因组信息的医疗保健正开始进入临床实践。电子病历和基因组学 (eMERGE) 网络在其初始阶段为这一转变奠定了基础。 Geisinger 卫生系统项目“用于转化基因组学的 EMR 关联生物库”旨在以 eMERGE 第二阶段的知识和经验为基础,加速发现和实施,同时扩大我们对医学基因组学的社会文化影响的理解。我们将通过三个具体目标来实现这一目标:1) 使用现有的生物样本、基因型和序列数据以及 EMR 生成的表型来发现所提出的疾病:家族性高胆固醇血症和慢性鼻窦炎,2) 开发和测试在临床实践中实施基因组信息的方法,3) 围绕临床相关基因组结果探索、开发和实施以家庭为中心的沟通新方法。目前,我们有超过 60,000 名患者广泛同意进行研究,其中越来越多的患者同意返回结果并存入电子健康记录。超过 18,000 名患者在高密度平台上进行了基因分型。选择我们提出的两种表型,即家族性高胆固醇血症 (FH) 和慢性鼻窦炎 (CRS),是因为这两种疾病对美国的公共卫生有重大影响,但它们也非常适合该项目的具体目标。它们为当前 eMERGE 方法的创新和扩展提供了机会。虽然其中许多创新将利用作为项目一部分完成的测序,但资助机会中还强调了其他几个领域,这将扩大 eMERGE 研究的范围。 eMERGE III 的重点领域之一是探索可行结果的家庭回报。 FH 非常适合这一点,因为目前的临床建议是对所有确诊患者的家庭成员进行级联检测。目前,这依赖于患者联系有风险的家庭成员,但这并不是最佳选择。我们将使用定性和定量方法探讨这个问题,并利用结果来设计和测试新颖的家庭沟通策略。基因-环境相互作用在疾病的发展和严重程度中发挥着重要作用。这些都是非常难研究的。我们提出了新的方法,利用 Geisinger Health System 和 eMERGE Network 的资产来开发和应用方法来扩展研究环境对 CRS 影响的现有项目。这将包括首次大规模全环境关联研究(EWAS)。最后,我们建议带头将经济建模和分析工具应用于 eMERGE 项目,以开始量化在美国医疗保健系统中实施基因组医学的价值。这些拟议的创新将放大 eMERGE 计划在将基因组医学从梦想变为现实方面已经产生的重大影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Marc S. Williams其他文献
Chronic granulomatous disease presenting with disseminated intracranial aspergillosis
伴有播散性颅内曲霉菌病的慢性肉芽肿性疾病
- DOI:
- 发表时间:
2006 - 期刊:
- 影响因子:3.2
- 作者:
A. Alsultan;Marc S. Williams;S. Lubner;F. Goldman - 通讯作者:
F. Goldman
A qualitative study of prevalent laboratory information systems and data communication patterns for genetic test reporting
流行的实验室信息系统和基因检测报告数据通信模式的定性研究
- DOI:
10.1038/s41436-021-01251-5 - 发表时间:
2021 - 期刊:
- 影响因子:8.8
- 作者:
A. Khalifa;C. C. Mason;J. Garvin;Marc S. Williams;G. Del Fiol;B. Jackson;S. Bleyl;S. Huff - 通讯作者:
S. Huff
A New Methodological Approach for Cost-Effectiveness Analysis in Genomic Medicine
基因组医学成本效益分析的新方法
- DOI:
10.1016/b978-0-12-801497-4.00008-4 - 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
V. Fragoulakis;C. Mitropoulou;Marc S. Williams;G. Patrinos - 通讯作者:
G. Patrinos
Interdisciplinary training to build an informatics workforce for precision medicine
跨学科培训,打造精准医疗信息学队伍
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Marc S. Williams;M. Ritchie;Philip R. O. Payne - 通讯作者:
Philip R. O. Payne
Is the genomic translational pipeline being disrupted?
基因组翻译管道是否被破坏?
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:4.5
- 作者:
Marc S. Williams - 通讯作者:
Marc S. Williams
Marc S. Williams的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Marc S. Williams', 18)}}的其他基金
EMR-Linked Biobank for Translational Genomics
用于转化基因组学的 EMR 关联生物库
- 批准号:
9902000 - 财政年份:2015
- 资助金额:
$ 87.12万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 87.12万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 87.12万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 87.12万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 87.12万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 87.12万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 87.12万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 87.12万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 87.12万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 87.12万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 87.12万 - 项目类别:
Continuing Grant