Novel Therapeutic Strategies in the Understanding of Systemic Amyloid Disease
了解系统性淀粉样蛋白疾病的新治疗策略
基本信息
- 批准号:9899736
- 负责人:
- 金额:$ 2.23万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-04-01 至 2020-05-31
- 项目状态:已结题
- 来源:
- 关键词:ATF6 geneAffectAgeAmyloidAmyloidosisAnimal ModelBiologicalBiological AssayCardiac MyocytesCardiomyopathiesCatalogsCellsCessation of lifeComplexCouplingDepositionDiagnosisDiflunisalDiseaseDisease ProgressionDisease modelDoseEffector CellEtiologyExhibitsFamilial Amyloid NeuropathiesFutureGenesGeneticGenomicsHeartHepatocyteHumanIn VitroIndividualInheritedKineticsKnowledgeLaboratoriesLesionLibrariesLiverMethodsModelingMutationNatureNervous system structureNeuronsOperative Surgical ProceduresOrganOrgan DonorPathogenesisPathologyPathway interactionsPatient CarePatientsPeripheralPeripheral Blood Mononuclear CellPeripheral Nervous SystemPeripheral Nervous System DiseasesPharmacologyPhenotypePrealbuminProductionProtein BiochemistryProteinsProteomeRefractoryRetinol Binding ProteinsSerumSeveritiesSiteSmall Interfering RNAStressStudy modelsTechnologyTestingTherapeuticThyroxineTimeTissuesToxic effectTreatment EfficacyVariantWorkalternative treatmentbasebody systemcell typechemical geneticscombatdisease phenotypeeffectiveness evaluationextracellularflexibilitygene correctionhuman diseaseimprovedinduced pluripotent stem cellinsightliver transplantationmonomermouse modelmutantnovelnovel therapeuticspreventprotein foldingproteotoxicityresponsesmall moleculestem cell differentiationtissue tropism
项目摘要
PROJECT SUMMARY
Familial transthyretin amyloidosis (ATTR) is a devastating multi-systemic protein folding disorder that results
from over 100 possible mutations in the transthyretin (TTR) gene. In the disease, TTR misfolds, is secreted from
the liver, and aggregates extracellularly in a concentration-dependent manner at downstream target organs such
as the heart and/or peripheral nervous system. ATTR exhibits extreme mutation-dependent variation in disease
phenotype (e.g. target organ affected and severity) with an average time of diagnosis to death of only 5-10 years.
The current standards of care for patients with ATTR, including liver transplantation and small molecule TTR
stabilizers, are highly limited; not all patients are candidates for surgery, large donor organ deficits exist, and
many patients are refractory to kinetic stabilizers. A better understanding of disease etiology as well as alternative
treatment options are necessary to combat systemic amyloid disorders.
Problematically, the multi-tissue nature of the disease makes it difficult to study in vitro, while no current
animal model accurately recapitulates ATTR pathology. To combat these limitations, our laboratory has
developed a novel, induced pluripotent stem cell (iPSC)-based model for studying ATTR. In our platform, patient-
derived iPSCs are differentiated into effector cells (hepatocyte-like cells) that produce mutant TTR. Conditioned
media is then prepared on these cells to (1) analyze the type and quantity of TTR species secreted and (2) dose
target cells (iPSC-derived cardiomyocytes and neurons) to assay resulting toxicity and the efficacy of proposed
therapeutics.
Using our genetically tractable model, we look to improve the current therapeutic paradigm for ATTR.
Importantly, studies show that reducing serum levels of destabilized TTR through liver transplantation or
activation of stress-responsive protein folding machinery reduces target organ toxicity. Armed with this insight
and our iPSC-based ATTR model, we will test the hypothesis that disruption of aberrant TTR expression or
activation of endogenous protein folding machinery will prove therapeutic for ATTR. We propose to evaluate this
hypothesis through two Aims. In the first, to overcome limitations of site-specific gene editing approaches for
treating ATTR, we will develop a universal gene correction strategy ameliorative of all TTR genetic lesions. In
the second, we will activate the ATF6 pathway of the unfolded protein response (UPR) using genomic and
pharmacological approaches to selectively decrease production of destabilized, toxic TTR. In both methods,
secretion of TTR species and their impact on patient-matched iPSC-derived target cell (neuron and
cardiomyocyte) toxicity will be evaluated.
Our iPSC-based model, described herein, allows for the unprecedented coupling of protein biochemistry
and genomic-based approaches to study novel aspects of systemic amyloidoses. Insight gained here will allow
for better understanding of and therapeutics for ATTR and other protein folding disorders.
项目总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Richard Giadone其他文献
Richard Giadone的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Richard Giadone', 18)}}的其他基金
Understanding Roles for Protein Homeostasis Machinery in Aging Brain Vasculature
了解蛋白质稳态机制在衰老脑血管中的作用
- 批准号:
10537760 - 财政年份:2022
- 资助金额:
$ 2.23万 - 项目类别:
Understanding Roles for Protein Homeostasis Machinery in Aging Brain Vasculature
了解蛋白质稳态机制在衰老脑血管中的作用
- 批准号:
10730184 - 财政年份:2022
- 资助金额:
$ 2.23万 - 项目类别:
Novel Therapeutic Strategies in the Understanding of Systemic Amyloid Disease
了解系统性淀粉样蛋白疾病的新治疗策略
- 批准号:
9760111 - 财政年份:2019
- 资助金额:
$ 2.23万 - 项目类别:
相似海外基金
Hormone therapy, age of menopause, previous parity, and APOE genotype affect cognition in aging humans.
激素治疗、绝经年龄、既往产次和 APOE 基因型会影响老年人的认知。
- 批准号:
495182 - 财政年份:2023
- 资助金额:
$ 2.23万 - 项目类别:
Investigating how alternative splicing processes affect cartilage biology from development to old age
研究选择性剪接过程如何影响从发育到老年的软骨生物学
- 批准号:
2601817 - 财政年份:2021
- 资助金额:
$ 2.23万 - 项目类别:
Studentship
RAPID: Coronavirus Risk Communication: How Age and Communication Format Affect Risk Perception and Behaviors
RAPID:冠状病毒风险沟通:年龄和沟通方式如何影响风险认知和行为
- 批准号:
2029039 - 财政年份:2020
- 资助金额:
$ 2.23万 - 项目类别:
Standard Grant
Neighborhood and Parent Variables Affect Low-Income Preschool Age Child Physical Activity
社区和家长变量影响低收入学龄前儿童的身体活动
- 批准号:
9888417 - 财政年份:2019
- 资助金额:
$ 2.23万 - 项目类别:
The affect of Age related hearing loss for cognitive function
年龄相关性听力损失对认知功能的影响
- 批准号:
17K11318 - 财政年份:2017
- 资助金额:
$ 2.23万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
- 批准号:
9320090 - 财政年份:2017
- 资助金额:
$ 2.23万 - 项目类别:
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
- 批准号:
10166936 - 财政年份:2017
- 资助金额:
$ 2.23万 - 项目类别:
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
- 批准号:
9761593 - 财政年份:2017
- 资助金额:
$ 2.23万 - 项目类别:
How age dependent molecular changes in T follicular helper cells affect their function
滤泡辅助 T 细胞的年龄依赖性分子变化如何影响其功能
- 批准号:
BB/M50306X/1 - 财政年份:2014
- 资助金额:
$ 2.23万 - 项目类别:
Training Grant
Inflamm-aging: What do we know about the effect of inflammation on HIV treatment and disease as we age, and how does this affect our search for a Cure?
炎症衰老:随着年龄的增长,我们对炎症对艾滋病毒治疗和疾病的影响了解多少?这对我们寻找治愈方法有何影响?
- 批准号:
288272 - 财政年份:2013
- 资助金额:
$ 2.23万 - 项目类别:
Miscellaneous Programs