Calibrating free-living physical activity characteristics across functionally-limited populations using machine-learned accelerometer approaches
使用机器学习的加速度计方法校准功能受限人群的自由生活身体活动特征
基本信息
- 批准号:9899101
- 负责人:
- 金额:$ 57.28万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-04-01 至 2022-03-31
- 项目状态:已结题
- 来源:
- 关键词:AccelerometerActivities of Daily LivingAddressAdoptedAdultAffectAgeAlgorithmsAnkleAreaBehaviorBehavior TherapyBehavioralBiomechanicsCalibrationCategoriesCharacteristicsClassificationCommunitiesComplexDataData CollectionDisabled PersonsDiseaseDisease ManagementDoseEffectivenessEnergy MetabolismEnvironmentEvolutionExerciseFrequenciesFundingGroupingHealthHip region structureImpairmentIndividualInterventionKnowledgeLaboratoriesLinear RegressionsMachine LearningMeasuresMedical Care CostsMethodsModelingMovementMovement DisordersOutcomePatientsPatternPhysical FunctionPhysical activityPhysical assessmentPopulationPopulation HeterogeneityPrevalenceProcessProtocols documentationReceiver Operating CharacteristicsResearchResolutionSamplingScientific Advances and AccomplishmentsSiteTechniquesTechnologyTestingTimeTrainingValidationWorkWristadvanced analyticsalgorithm trainingbasecomputerized data processingcostdisabilitydoubly-labeled waterevidence based guidelinesfunctional disabilityfunctional groupinnovationmachine learning algorithmmachine learning methodmotor impairmentpopulation movementprediction algorithmpreventrespiratoryresponsesedentary lifestylesensorstandard measurewearable sensor technology
项目摘要
PROJECT SUMMARY/ ABSTRACT
One in 5 U.S. adults are thought to be living with a disability/impairment, a complex and multifaceted condition
affecting movement patterns with related medical care costs exceeding $300 billion annually. Precise and
accurate assessment of physical activity (PA) and sedentary behavior (SB) in individuals with disabiliy/
impairment is essential to accurately measure PA/SB prevalence rates and effectiveness of behavioral based
PA/SB interventions, and to fully elucidate PA/SB dose-response health relationships. Scientific progress has
been made in this area with advanced analytics and data processing techniques applied to wearable
accelerometers from laboratory calibration studies. There is a scientific need to extend calibration studies from
fixed-duration laboratory simulated activities of daily living to free-living calibrations with natural observation
and accelerometer algorithm training and validation. The aims of this proposal fill this essential scientific
knowledge gap. The specific aims are: 1) To evaluate and refine machine-learned algorithms to predict energy
cost and activity type during a 24-hr respiratory calorimeter stay; 2) To validate machine-learned accelerometer
algorithms with field-derived, video-recorded direct observation; and 3) To validate machine-learned algorithms
using the doubly labeled water technique. Our highly qualified research team will address the above aims by
using brief translatable functional tests to cluster movement-impaired populations into groups of healthy,
upper-body impairment, lower-body impairment, and upper- and lower-body impairment. Best practice free-
living calibration protocols will then be used to train, refine, and evaluate functional clustered-specific
accelerometer algorithms for predicting activity energy cost, activity type, activity transitions, and activity
domain. The results of these proposed studies will for the first time provide an innovative and translatable
approach to categorize and assess free-living PA/SB in persons with disability and movement impairment.
项目摘要/摘要
美国五分之一的成年人被认为患有残疾/障碍,这是一种复杂而多方面的状况
每年影响运动模式,相关的医疗服务费用超过3000亿美元。精确和
精确评估体育活动(PA)和久坐行为(SB)
损伤对于准确测量PA/SB的患病率和基于行为的有效性至关重要
PA/SB干预措施,并充分阐明PA/SB剂量反应健康关系。科学进步已有
是在该领域使用高级分析和数据处理技术应用于可穿戴的领域制造的
实验室校准研究的加速度计。科学的需要扩展了从
自然观察
以及加速度计算法培训和验证。该提案的目的填补了这一基本科学
知识差距。具体目的是:1)评估和完善机器学习算法以预测能量
24小时呼吸量热仪停留期间的成本和活动类型; 2)验证机器学习的加速度计
具有现场衍生的,视频录制的直接观察算法; 3)验证机器学习算法
使用双重标记的水技术。我们高素质的研究团队将解决上述目标
使用简短的可翻译功能测试将受损的运动群集成成一组健康的人群
上体障碍,下体障碍以及上身和下半身障碍。最佳练习免费 -
然后,将使用生活校准方案来训练,完善和评估功能群集特异性
预测活动能源成本,活动类型,活动过渡和活动的加速度计算法
领域。这些拟议的研究的结果首次将提供创新和可翻译的结果
在残疾和运动障碍的人中对自由生活PA/SB进行分类和评估的方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SCOTT J STRATH其他文献
SCOTT J STRATH的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SCOTT J STRATH', 18)}}的其他基金
Calibrating free-living physical activity characteristics across functionally-limited populations using machine-learned accelerometer approaches
使用机器学习的加速度计方法校准功能受限人群的自由生活身体活动特征
- 批准号:
9284636 - 财政年份:2017
- 资助金额:
$ 57.28万 - 项目类别:
Physical Activity Calibration in Individuals with Movement Limitations
运动受限个体的体力活动校准
- 批准号:
8749880 - 财政年份:2014
- 资助金额:
$ 57.28万 - 项目类别:
Heart Rate and Movement Integration to Improve Physical Activity Assessment
心率和运动整合以改善体力活动评估
- 批准号:
8402641 - 财政年份:2008
- 资助金额:
$ 57.28万 - 项目类别:
Heart Rate and Movement Integration to Improve Physical Activity Assessment
心率和运动整合以改善体力活动评估
- 批准号:
7687348 - 财政年份:2008
- 资助金额:
$ 57.28万 - 项目类别:
Heart Rate and Movement Integration to Improve Physical Activity Assessment
心率和运动整合以改善体力活动评估
- 批准号:
7882466 - 财政年份:2008
- 资助金额:
$ 57.28万 - 项目类别:
Heart Rate and Movement Integration to Improve Physical Activity Assessment
心率和运动整合以改善体力活动评估
- 批准号:
8110713 - 财政年份:2008
- 资助金额:
$ 57.28万 - 项目类别:
相似国自然基金
城市夜间日常生活区的演进过程、活力机制与更新治理路径研究
- 批准号:52378053
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
川江流域山地旧城滨水区日常生活空间与地形关系演进及其当代传承研究:以重庆为例(1891-2004)
- 批准号:52308006
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
中国城市-乡村生活方式移民的乡村意象与日常生活研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
中国城市-乡村生活方式移民的乡村意象与日常生活研究
- 批准号:42201250
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
融合媒介环境学视角的日常生活空间体验研究
- 批准号:42171221
- 批准年份:2021
- 资助金额:47 万元
- 项目类别:面上项目
相似海外基金
Cognitive Health and Modifiable Factors of Daily Sleep and Activities Among Dementia Family Caregivers
痴呆症家庭护理人员的认知健康状况以及日常睡眠和活动的可改变因素
- 批准号:
10643624 - 财政年份:2023
- 资助金额:
$ 57.28万 - 项目类别:
Using instrumented everyday gait to predict falls in older adults using the WHS cohort
使用 WHS 队列,使用仪器化的日常步态来预测老年人跌倒
- 批准号:
10657828 - 财政年份:2023
- 资助金额:
$ 57.28万 - 项目类别:
Walking Exercise Sustainability Through Telehealth for Veterans with Lower-LimbAmputation
通过远程医疗为下肢截肢退伍军人提供步行锻炼的可持续性
- 批准号:
10534859 - 财政年份:2022
- 资助金额:
$ 57.28万 - 项目类别:
Automated System for Accurate Determination of Activities of Daily Living for Independently-Living Persons with Alzheimers Disease and Related Dementias
用于准确确定患有阿尔茨海默病和相关痴呆症的独立生活者的日常生活活动的自动化系统
- 批准号:
10543933 - 财政年份:2022
- 资助金额:
$ 57.28万 - 项目类别:
Validation of Smartphone-Derived Digital Phenotypes for Cognitive Assessment in Older Adults
验证智能手机衍生的数字表型用于老年人认知评估
- 批准号:
10066084 - 财政年份:2021
- 资助金额:
$ 57.28万 - 项目类别: