Vascular niche bioengineering for human bone regeneration
用于人骨再生的血管生态位生物工程
基本信息
- 批准号:9898291
- 负责人:
- 金额:$ 38.94万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-05-16 至 2021-04-30
- 项目状态:已结题
- 来源:
- 关键词:Adipose tissueAutologousBMP2 geneBMP7 geneBioluminescenceBiomedical EngineeringBlood VesselsBone MarrowBone RegenerationBone TransplantationCRISPR/Cas technologyCalvariaCandidate Disease GeneCell DensityClinicalCuesDefectEducationEndothelial CellsEngraftmentExposure toGenesGenetic TranscriptionGoalsHarvestHumanHuman ActivitiesImmunodeficient MouseImplantKITLG geneKnock-outLuciferasesMSX1 Transcription FactorMSX1 geneMeasuresMedicineMesenchymal Stem CellsModelingModificationMonitorMorbidity - disease rateMusNatural regenerationOsteogenesisPatientsPerfusionPericytesPhysiologic OssificationProceduresProcessPropertyRegulationReporterResearchSiteSourceSpecificityTestingTimeTissuesTransplantationUltrasonographyUmbilical Cord BloodUnited StatesVascular GraftVascularizationbasebonecontrast enhancedhuman stem cellshuman tissueimprovedin vivoinduced pluripotent stem cellknock-downmicroCTosteogenicosteoinductive factoroverexpressionparacrinepreservationpromoterreceptor bindingregenerative therapysmall hairpin RNAstem cellssubcutaneoussubstantia spongiosatherapy developmenttranscriptome sequencing
项目摘要
PROJECT SUMMARY/ABSTRACT
Every year, >1 million patients undergo bone repair procedures in the United States. Autologous bone grafting
remains the preferred treatment for bone defects, but this practice is limited by bone availability and donor site
morbidity from harvesting the bone. Alternatively, the development of therapies that exploit the osteogenic
potential of bone marrow-derived mesenchymal stem cells (bmMSCs) continues to be a priority in
osteoregenerative medicine. However, efforts remain largely empirical due to poor understanding of the
mechanisms regulating bmMSC engraftment and osteogenic activity in vivo. Our long-term goal is to develop a
regenerative therapy that is based on bioengineering an osteoinductive niche for human bmMSCs. We have
found that the in vivo preservation of human bmMSC osteogenic potential depends on sustaining proximity to
endothelial cells (ECs) and on the timely engraftment of bmMSCs as perivascular cells (Lin et al., PNAS 2014).
We have also found that vascular networks bioengineered using human iliac crest trabecular bone ECs (bECs)
could spontaneously induce osteogenic differentiation of bmMSCs at ectopic sites. In contrast, ECs from other
human tissues could not. In addition, we have identified five candidate genes (BMP2, BMP7, NOG, KITLG,
MSX1) differentially upregulated in bECs. Our overarching hypothesis is that bioengineered microvessels lined
with bECs serve as stable niches for bmMSCs and autonomously drive osteogenesis via regulation of specific
osteoinductive genes. Moreover, we postulate that induced pluripotent stem cells (iPSCs) could offer a plentiful
source of surrogate bECs, eliminating the need for harvesting autologous trabecular bone. To test these
hypotheses and to elucidate the precise osteoinductive factors whereby human trabecular bECs uniquely
regulate osteogenesis, we propose three Specific Aims. In Aim-1, we will bioengineer vascular networks with
human bECs and bmMSCs and determine the capacity to regenerate critical-sized orthotopic bone defects. In
Aim-2, we will determine the factors responsible for the unique in vivo osteoinductive potential of human
trabecular bECs. We will knockout each candidate bEC gene and will determine the effect on in vivo
osteogenesis. To this end, we will use a luciferase-reporter driven by the human osterix promoter to measure
bmMSC osteogenic activity via bioluminescence. In Aim-3, we will determine conditions to generate surrogate
bECs from iPSCs. We will examine whether iPSC-derived ECs (iECs) acquire osteoinductive properties upon
transplantation into bone sites and are in turn able to autonomously regulate the osteogenic activity of bmMSCs
in vivo. We will use our murine calvarial bone defect model to determine the extent of in vivo osteogenic
education of iECs by measuring (i) transcriptional profile modifications (RNAseq) and (ii) osteoinductive
properties in engrafted iECs. We will also determine the long-term (16 weeks) bone repair capability of constructs
containing iECs and whether implanting pre-educated iECs improves the extent of bone repair. Collectively, we
envision this research could become the basis for a new strategy in the repair of bone defects.
项目摘要/摘要
每年,超过 100 万患者在美国接受骨修复手术。 自体骨移植
仍然是骨缺损的首选治疗方法,但这种做法受到骨可用性和供体部位的限制
因采集骨头而发病。 或者,开发利用成骨作用的疗法
骨髓间充质干细胞 (bmMSC) 的潜力仍然是优先考虑的问题
骨再生医学。 然而,由于对实际情况了解甚少,这些努力在很大程度上仍然是经验性的。
调节 bmMSC 植入和体内成骨活性的机制。 我们的长期目标是开发
基于生物工程的再生疗法和人类骨髓间充质干细胞的骨诱导利基。 我们有
发现人类 bmMSC 成骨潜力的体内保存取决于维持与
内皮细胞 (EC) 以及 bmMSC 作为血管周围细胞的及时植入(Lin 等人,PNAS 2014)。
我们还发现,使用人髂嵴骨小梁 EC(bEC)进行生物工程改造的血管网络
可以在异位部位自发诱导 bmMSC 成骨分化。 相比之下,来自其他国家的 EC
人体组织则不能。 此外,我们还鉴定了五个候选基因(BMP2、BMP7、NOG、KITLG、
MSX1) 在 bEC 中差异上调。 我们的首要假设是生物工程微血管内衬
bEC 作为 bmMSC 的稳定生态位,并通过特定的调节自主驱动成骨
骨诱导基因。 此外,我们假设诱导多能干细胞 (iPSC) 可以提供充足的
替代 bEC 的来源,消除了采集自体小梁骨的需要。 要测试这些
假设并阐明精确的骨诱导因素,从而使人类小梁 bEC 具有独特的作用
调节成骨,我们提出了三个具体目标。 在目标 1 中,我们将对血管网络进行生物工程
人类 bEC 和 bmMSC 并确定再生临界尺寸原位骨缺损的能力。 在
目标 2,我们将确定人类独特的体内骨诱导潜力的因素
小梁 bEC。 我们将敲除每个候选 bEC 基因,并确定其对体内的影响
成骨。 为此,我们将使用由人类 osterix 启动子驱动的荧光素酶报告基因来测量
bmMSC 通过生物发光进行成骨活性。 在目标 3 中,我们将确定生成代理的条件
来自 iPSC 的 bEC。 我们将检查 iPSC 衍生的 EC (iEC) 是否获得骨诱导特性
移植到骨部位,并能够自主调节 bmMSC 的成骨活性
在体内。 我们将使用我们的小鼠颅骨骨缺损模型来确定体内成骨的程度
通过测量 (i) 转录谱修饰 (RNAseq) 和 (ii) 骨诱导来对 iEC 进行教育
植入 iEC 中的特性。 我们还将确定结构的长期(16 周)骨骼修复能力
含有 iEC 以及植入预先教育的 iEC 是否可以提高骨修复的程度。 总的来说,我们
预计这项研究可能成为修复骨缺损的新策略的基础。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Spatiotemporal release of BMP-2 and VEGF enhances osteogenic and vasculogenic differentiation of human mesenchymal stem cells and endothelial colony-forming cells co-encapsulated in a patterned hydrogel.
- DOI:10.1016/j.jconrel.2015.12.031
- 发表时间:2016-02-10
- 期刊:
- 影响因子:0
- 作者:Barati D;Shariati SRP;Moeinzadeh S;Melero-Martin JM;Khademhosseini A;Jabbari E
- 通讯作者:Jabbari E
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Juan M Melero-Martin其他文献
Juan M Melero-Martin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Juan M Melero-Martin', 18)}}的其他基金
Human endothelial cell regulation of ossification
人内皮细胞对骨化的调节
- 批准号:
10680596 - 财政年份:2022
- 资助金额:
$ 38.94万 - 项目类别:
Human endothelial cell regulation of ossification
人内皮细胞对骨化的调节
- 批准号:
10518580 - 财政年份:2022
- 资助金额:
$ 38.94万 - 项目类别:
Enhancing endothelial cell engraftment via transplantation of exogenous mitochondria
通过外源线粒体移植增强内皮细胞植入
- 批准号:
10320796 - 财政年份:2020
- 资助金额:
$ 38.94万 - 项目类别:
Enhancing endothelial cell engraftment via transplantation of exogenous mitochondria
通过外源线粒体移植增强内皮细胞植入
- 批准号:
10520043 - 财政年份:2020
- 资助金额:
$ 38.94万 - 项目类别:
Host neutrophils as direct mediators of tissue graft revascularization
宿主中性粒细胞作为组织移植物血运重建的直接介质
- 批准号:
9335259 - 财政年份:2016
- 资助金额:
$ 38.94万 - 项目类别:
Vascular niche bioengineering for human bone regeneration
用于人骨再生的血管生态位生物工程
- 批准号:
9174589 - 财政年份:2016
- 资助金额:
$ 38.94万 - 项目类别:
Engineering vascularized tissue in vivo using postnatal progenitor cells
使用出生后祖细胞改造体内血管化组织
- 批准号:
8510643 - 财政年份:2009
- 资助金额:
$ 38.94万 - 项目类别:
Engineering vascularized tissue in vivo using postnatal progenitor cells
使用出生后祖细胞在体内工程血管化组织
- 批准号:
7740989 - 财政年份:2009
- 资助金额:
$ 38.94万 - 项目类别:
相似海外基金
Phase I/II clinical trial of autologous T cell gene therapy to treat X-linked lymphoproliferative disease (XLP)
自体T细胞基因疗法治疗X连锁淋巴增殖性疾病(XLP)的I/II期临床试验
- 批准号:
MR/Y019458/1 - 财政年份:2024
- 资助金额:
$ 38.94万 - 项目类别:
Research Grant
Fabrication and Evaluation of Poly(glycerol sebacate) based small diameter vascular graft as a potent substitution for autologous vessels
基于聚(甘油癸二酸酯)的小直径血管移植物作为自体血管有效替代品的制造和评估
- 批准号:
2897580 - 财政年份:2023
- 资助金额:
$ 38.94万 - 项目类别:
Studentship
Autologous Bone Marrow Aspirate Concentrate for the Treatment of Osteonecrosis of the Femoral Head
自体骨髓抽吸浓缩液治疗股骨头坏死
- 批准号:
10658324 - 财政年份:2023
- 资助金额:
$ 38.94万 - 项目类别:
Identifying multimodal biomarkers for autologous serum tears in the treatment of chronic postoperative ocular pain
识别治疗慢性术后眼痛的自体血清泪液的多模式生物标志物
- 批准号:
10794761 - 财政年份:2023
- 资助金额:
$ 38.94万 - 项目类别:
SBIR Phase II: An Injectable Protein Matrix to Enhance the Stability of Autologous Fat Grafts
SBIR II 期:可注射蛋白质基质,增强自体脂肪移植物的稳定性
- 批准号:
2304430 - 财政年份:2023
- 资助金额:
$ 38.94万 - 项目类别:
Cooperative Agreement
Application of Autologous Connective Tissue Sheets Created in Patients' Bodies to Pediatric Cardiac Valvuloplasty and Development of Dedicated Molds
患者体内自体结缔组织片在小儿心脏瓣膜成形术中的应用及专用模具的开发
- 批准号:
23K15543 - 财政年份:2023
- 资助金额:
$ 38.94万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
MICA: Strategy for heart repair in Duchenne Muscular Dystrophy (DMD) using genetically engineered autologous Mesoangioblasts
MICA:利用基因工程自体中成血管细胞修复杜氏肌营养不良症 (DMD) 的心脏的策略
- 批准号:
MR/X00466X/1 - 财政年份:2023
- 资助金额:
$ 38.94万 - 项目类别:
Fellowship
Planning a phase I study of minor salivary gland derived autologous MSCs for prevention of long-term radiation induced xerostomia
计划对小唾液腺来源的自体 MSC 进行 I 期研究,以预防长期辐射引起的口干症
- 批准号:
10720234 - 财政年份:2023
- 资助金额:
$ 38.94万 - 项目类别:
SBIR PHASE II, TOPIC 429: A NEW PARADIGM FOR AUTOLOGOUS AND ALLOGENEIC CELL THERAPY MANUFACTURING
SBIR 第二阶段,主题 429:自体和同种异体细胞治疗制造的新范式
- 批准号:
10976161 - 财政年份:2023
- 资助金额:
$ 38.94万 - 项目类别:
Evaluation of a therapeutic vaccination strategy with motif neoepitope peptide-pulsed autologous dendritic cells for non-small cell lung cancer patients harboring a charged HLA-B binding pocket.
使用基序新表位肽脉冲的自体树突状细胞对携带带电 HLA-B 结合袋的非小细胞肺癌患者的治疗性疫苗接种策略进行评估。
- 批准号:
10721983 - 财政年份:2023
- 资助金额:
$ 38.94万 - 项目类别:














{{item.name}}会员




