Design of Antivirals and Immunogens Targeting Paramyxoviruses
针对副粘病毒的抗病毒药物和免疫原的设计
基本信息
- 批准号:9746856
- 负责人:
- 金额:$ 37.23万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-05-16 至 2023-04-30
- 项目状态:已结题
- 来源:
- 关键词:AffinityAlgorithmsAmino Acid SequenceAntibioticsAntibody ResponseAntigensAntiviral AgentsAvidityBackBacterial InfectionsBindingBinding ProteinsBinding SitesBiological AssayBiological ModelsBronchiolitisCase Fatality RatesCell membraneCessation of lifeChimeric ProteinsCrystallizationDNA biosynthesisDNA sequencingDataData SetDetectionDevelopmentDiagnosticDisease OutbreaksEbola virusElementsEmerging Communicable DiseasesEncephalitisEpidemicEpitopesEvaluationFamilyFamily memberFoundationsGenerationsGlycoproteinsGoalsHIVHIV-1Hendra VirusHenipavirusImmune EvasionImmune systemInfantInfectionInfluenzaKnowledgeLibrariesMediatingMembraneMembrane FusionMembrane GlycoproteinsMembrane ProteinsMethodologyMethodsModelingMolecularMolecular ConformationMonitorNipah VirusParamyxovirusPathogenicityPatternPneumoniaPreparationProphylactic treatmentProtein EngineeringProteinsProtocols documentationReagentReceptor CellResolutionRespiratory syncytial virusRespiratory syncytial virus RSV F proteinsRoleScaffolding ProteinSevere Acute Respiratory SyndromeSiteStructureSurfaceVaccinationVaccine DesignVaccinesVariantViralVirusVirus DiseasesWorkbasecomputer designcomputer generateddesigngenetic selectionimprovedinfluenzavirusinhibitor/antagonistinnovationinsightmemberneutralizing antibodynext generationnovelnovel therapeuticsreceptorreceptor bindingresponsevaccine candidatevirus envelope
项目摘要
Abstract
Viral infection results in thousands of deaths and an enormous humanitarian burden every year, yet
unlike antibiotics for bacterial infection, very few antivirals are available. At present, few methods exist for
generating effective antivirals. The increasing availability of atomic resolution structural information of
various viral surface proteins promises to chance this. The overall objective of this application is to use the
surface glycoproteins of Paramyxoviruses (PMV) as a model system to generate design methodologies
that will take advantage of structural features present in a broad range of viruses, resulting in a robust
platform for the design of new therapeutics, diagnostics and immunogens for vaccination. PMVs are an
ideal model system as their family members have the same fold for receptor recognition yet bind to very
different host cell receptors.
We recently demonstrated that computational protein design can be used to generate de novo antivirals
that broadly neutralize diverse strains of influenza. These computer-generated proteins can also function
as highly sensitive diagnostics. Guided by these results, the following specific aims will be pursued: (i)
Develop general design strategies to target virus:host cell receptor interactions and design antivirals using
Hendra and Nipah Viruses as model systems; (ii) inhibit membrane fusion of RSV by targeting the
intermediate fusion states; and (iii) selectively stabilize the pre- and post-fusion state stabilization of the F-
protein of RSV and probe their contributions to infectivity and vaccine design.
The first aim is based on the observation that many receptor-binding sites of enveloped viruses lay
within a recessed pocket, enabling evasion from the immune system. Computational design strategies
which specifically target pockets will enable the development a robust algorithm to generate antiviral
proteins which bind at these sites. The second aim is based on the hypothesis that the post-fusion
structure of viral surface proteins provides the blueprint to targeting their transition state. Small proteins will
be designed to molecularly “jam” the 3-helical core structure that is common to most type I fusion proteins
and therefore will be provide a general method to inhibit type I fusion proteins, which include viruses such
as HIV-1, Ebola, SARS and others. Lastly, the objective of aim three is to simultaneously model the pre-
and post-fusion states of the F-protein of RSV to generate variants to favor one state over the other.
Variants will be assayed for changes in infectivity. The trapped pre-fusion state stabilized by disfavoring the
post-fusion state will provide the basis for a new angle on immunogen design. If successful, data on
designs will be fed back into the developed algorithm, leading to rapid development of new antivirals
against emerging epidemics.
摘要
病毒感染每年导致数千人死亡,造成巨大的人道主义负担,然而,
与治疗细菌感染的抗生素不同,可用的抗病毒药物很少。目前,很少有方法
产生有效的抗病毒药物越来越多的原子分辨率结构信息的可用性
各种病毒表面蛋白质有望改变这一点。此应用程序的总体目标是使用
副粘病毒(PMV)的表面糖蛋白作为产生设计方法的模型系统
这将利用广泛的病毒中存在的结构特征,从而产生强大的
为疫苗接种设计新的治疗方法、诊断方法和免疫原的平台。PMV是一种
理想的模型系统,因为它们的家族成员具有相同的受体识别折叠,
不同的宿主细胞受体
我们最近证明,计算蛋白质设计可以用来产生从头抗病毒药物
能广泛中和多种流感病毒这些计算机生成的蛋白质也可以发挥作用
作为高度敏感的诊断工具。在这些成果的指导下,将努力实现以下具体目标:
开发针对病毒的一般设计策略:宿主细胞受体相互作用,并使用
亨德拉病毒和尼帕病毒作为模型系统;(ii)通过靶向RSV的膜融合来抑制RSV的膜融合。
(iii)选择性地稳定F-半导体的融合前和融合后状态稳定化;
RSV的蛋白质,并探讨其对感染性和疫苗设计的贡献。
第一个目的是基于这样的观察,即包膜病毒的许多受体结合位点位于
在一个凹进的口袋里,能够逃避免疫系统。计算设计策略
其特异性靶向口袋将使得能够开发鲁棒的算法来产生抗病毒药物
在这些位点结合的蛋白质。第二个目标是基于这样的假设,即后融合
病毒表面蛋白的结构提供了靶向其过渡状态的蓝图。小蛋白质将
被设计成分子“堵塞”大多数I型融合蛋白共有的3-螺旋核心结构
因此将提供抑制I型融合蛋白的一般方法,所述I型融合蛋白包括病毒,
如HIV-1、埃博拉、SARS和其他疾病。最后,目标三的目标是同时模拟前-
和RSV的F-蛋白的融合后状态,以产生有利于一种状态而不是另一种状态的变体。
将测定变体的感染性变化。被捕获的融合前状态通过不利于
融合后状态将为免疫原设计的新角度提供基础。如果成功,
设计将反馈到开发的算法中,从而快速开发新的抗病毒药物
对抗新出现的流行病
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Eva-Maria Strauch其他文献
Eva-Maria Strauch的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Eva-Maria Strauch', 18)}}的其他基金
Mechanistic Studies of Viral Host Cell Recognition and Entry and their Implication for Protein Design of Molecular Delivery Devices
病毒宿主细胞识别和进入的机制研究及其对分子递送装置蛋白质设计的意义
- 批准号:
10527903 - 财政年份:2022
- 资助金额:
$ 37.23万 - 项目类别:
Mechanistic Studies of Viral Host Cell Recognition and Entry and their Implication for Protein Design of Molecular Delivery Devices
病毒宿主细胞识别和进入的机制研究及其对分子递送装置蛋白质设计的意义
- 批准号:
10652635 - 财政年份:2022
- 资助金额:
$ 37.23万 - 项目类别:
Mechanistic Studies of Viral Host Cell Recognition and Entry and their Implication for Protein Design of Molecular Delivery Devices
病毒宿主细胞识别和进入的机制研究及其对分子递送装置蛋白质设计的意义
- 批准号:
10889837 - 财政年份:2022
- 资助金额:
$ 37.23万 - 项目类别:
Design of Antivirals and Immunogens Targeting Paramyxoviruses
针对副粘病毒的抗病毒药物和免疫原的设计
- 批准号:
10399484 - 财政年份:2018
- 资助金额:
$ 37.23万 - 项目类别:
Design of Antivirals and Immunogens Targeting Paramyxoviruses
针对副粘病毒的抗病毒药物和免疫原的设计
- 批准号:
9912717 - 财政年份:2018
- 资助金额:
$ 37.23万 - 项目类别:
Design of Antivirals and Immunogens Targeting Paramyxoviruses
针对副粘病毒的抗病毒药物和免疫原的设计
- 批准号:
10889846 - 财政年份:2018
- 资助金额:
$ 37.23万 - 项目类别:
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 37.23万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 37.23万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 37.23万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 37.23万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 37.23万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 37.23万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 37.23万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 37.23万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 37.23万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 37.23万 - 项目类别:
Research Grant














{{item.name}}会员




