The of Role DNA LigIV and Its Accessory Factors in the NHEJ Synaptic Complex
DNA LigIV及其辅助因子在NHEJ突触复合体中的作用
基本信息
- 批准号:9770538
- 负责人:
- 金额:$ 6.37万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-01 至 2020-08-31
- 项目状态:已结题
- 来源:
- 关键词:Binding SitesBiotechnologyCell SurvivalCellsChromosome PairingColorComplexDNADNA Double Strand BreakDNA LigationDNA Repair PathwayDNA-PKcsDataDevelopmentDiseaseDouble Strand Break RepairEukaryotaEventFilamentFluorescenceFluorescence Resonance Energy TransferGoalsImmune systemKnowledgeLabelLaboratoriesLigaseLigationMalignant NeoplasmsMeasuresMethodsModelingMonitorN-terminalNonhomologous DNA End JoiningPhosphotransferasesPhysiologicalProcessProteinsRoleSeriesStructureSynapsesSystemSystems DevelopmentTechnologyTestingTimeXRCC4 geneXenopuscytotoxicdimereggexperimental studyfluorescence imaginggenome integritymolecular imagingmutantnovel therapeuticsrecruitrepairedsingle moleculesingle-molecule FRETstoichiometry
项目摘要
Abstract
DNA Double strand breaks (DSBs) pose a serious threat to genomic integrity and cell survival, and are
drivers of cancer. Non-homologous end joining (NHEJ) is responsible for repairing the majority of these breaks
in higher eukaryotes. The NHEJ synaptic complex consists of the core factors Ku, DNA-PKcs, XRCC4/LigIV,
and XLF. Together these repair proteins must first recognize the DSB, tether the DNA ends together, and then
process and align them for direct ligation by the XRCC4/LigIV complex. By utilizing single-molecule FRET
(smFRET) to monitor DNA end synapsis in real time within the context of the physiological Xenopus egg extract
system, our lab has recently shown that repair by NHEJ proceeds through at least two distinct stages. DNA ends
are first synapsed in a Long Range Complex where the ends are more than 10 nm apart. Only Ku and DNA-
PKcs are required to form this state. Next, the DNA ends are closely aligned prior to ligation in a Short Range
Complex. The transition to the Short Range Complex requires DNA-PKcs kinase activity and the presence of
XLF and XRCC4/LigIV. However, LigIV’s catalytic activity is not required to form the Short Range Complex. What
drives the transition between these two distinct states remains unclear.
In this proposal, I aim to determine the role of XRCC4/LigIV in DNA end synapsis through continued use
of the Xenopus egg extract system in single-molecule fluorescence experiments. Building on preliminary data
demonstrating that a single copy of XLF is sufficient for end joining, I will determine the number of XRCC4/LigIV
and free XRCC4 present and acting at a double strand breaks. I will generate labeled XRCC4/LigIV and free
XRCC4 constructs to directly determine the copy number of each at DSBs using 3-color single-molecule imaging.
Additionally, I will determine whether interaction with XLF is required to retain or stabilize XRCC4/LigIV or free
XRCC4 within the Short Range Complex.
The observation that LigIV, but not its catalytic activity, is needed to progress to the Short Range Complex
suggests that LigIV has a structural role in synaptic complex assembly. To determine the basis of this role, I will
generate a series of N-terminal truncation mutants, and reveal the minimal LigIV domain requirements for Short
Range Complex formation. Whether the interactions that drive Short Range Complex formation involve DNA or
are required for LigIV to gain access to the DNA ends is unclear. I will employ a 3-color smFRET strategy to
measure when LigIV interacts with the DNA ends relative to the formation of the Short Range Complex. These
findings will have the potential for significant impact in the field, as the role(s) of the most critical component of
NHEJ, XRCC4/LigIV, remains poorly defined. Elucidating the mechanism of XRCC4/LigIV, and more broadly
NHEJ, will allow for a better understanding of disease and inform the development of new therapies and
biotechnology applications.
摘要
DNA双链断裂(DSB)对基因组完整性和细胞存活构成严重威胁,
癌症的司机非同源末端连接(NHEJ)负责修复大多数这些断裂
在高等真核生物中。NHEJ突触复合体由核心因子Ku、DNA-PKcs、XRCC 4/LigIV组成,
还有XLF。这些修复蛋白必须首先识别DSB,将DNA末端连接在一起,然后
处理并排列它们,用于通过XRCC 4/LigIV复合物直接连接。通过利用单分子FRET
(smFRET)监测DNA末端突触在真实的时间内的背景下的生理爪蟾卵提取物
系统,我们的实验室最近表明,修复NHEJ进行通过至少两个不同的阶段。DNA末端
首先在长距离复合体中突触,其中末端相距超过10 nm。只有Ku和DNA-
需要PKC来形成这种状态。接下来,在短范围内连接之前,将DNA末端紧密对齐。
复杂.向短程复合物的转变需要DNA-PKcs激酶活性和
XLF和XRCC 4/LigIV。然而,LigIV的催化活性不是形成短程复合物所必需的。什么
这两种不同状态之间的转换驱动力仍不清楚。
在这个提议中,我的目标是通过继续使用XRCC 4/LigIV来确定XRCC 4/LigIV在DNA末端突触中的作用。
的爪蟾卵提取物系统在单分子荧光实验。根据初步数据
为了证明XLF的单个拷贝足以进行末端连接,我将确定XRCC 4/LigIV的数目,
和存在并作用于双链断裂处的游离XRCC 4。我将生成标记的XRCC 4/LigIV和游离的
XRCC 4构建体,以使用3色单分子成像直接确定每个在DSB处的拷贝数。
此外,我将确定是否需要与XLF的相互作用来保留或稳定XRCC 4/LigIV或游离XRCC 4/LigIV。
短程复合物中的XRCC 4。
观察到LigIV,而不是其催化活性,需要进展到短程复合物
表明LigIV在突触复合体组装中具有结构作用。为了确定这一角色的基础,我将
产生了一系列的N-末端截短突变体,并揭示了短的最小LigIV结构域的要求,
靶场综合体编队。驱动短程复合物形成的相互作用是否涉及DNA或
LigIV进入DNA末端所需的条件尚不清楚。我将采用3色smFRET策略,
测量相对于短程复合物的形成,LigIV何时与DNA末端相互作用。这些
调查结果将有可能在实地产生重大影响,因为调查结果中最关键的组成部分的作用
NHEJ,XRCC 4/LigIV,仍然定义不清。阐明XRCC 4/LigIV的机制,更广泛地
NHEJ将允许更好地了解疾病,并为新疗法的开发提供信息,
生物技术应用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sean Michael Carney其他文献
Sean Michael Carney的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Pioneering reproductive biotechnology innovations for equine breeding
开创马匹育种生殖生物技术创新
- 批准号:
LP230100156 - 财政年份:2024
- 资助金额:
$ 6.37万 - 项目类别:
Linkage Projects
Industrial Biotechnology Innovation Cluster
产业生物技术创新集群
- 批准号:
EP/Y024168/1 - 财政年份:2024
- 资助金额:
$ 6.37万 - 项目类别:
Research Grant
Environmental Biotechnology Innovation Centre
环境生物技术创新中心
- 批准号:
BB/Y008332/1 - 财政年份:2024
- 资助金额:
$ 6.37万 - 项目类别:
Research Grant
Shear Innovation: Valorising wool waste using biotechnology to enhance horticultural peat-free growing media
剪切创新:利用生物技术提高羊毛废料的价值,以增强园艺无泥炭生长介质
- 批准号:
10106787 - 财政年份:2024
- 资助金额:
$ 6.37万 - 项目类别:
Launchpad
Conference: Translating Molecular Science Innovations into Biotechnology Solutions
会议:将分子科学创新转化为生物技术解决方案
- 批准号:
2419731 - 财政年份:2024
- 资助金额:
$ 6.37万 - 项目类别:
Standard Grant
MFB: Partnerships to Transform Emerging Industries - RNA Tools/Biotechnology: Stabilizing Hairpin Inserts in RNA Virus Induced Gene Silencing Vectors
MFB:合作变革新兴产业 - RNA 工具/生物技术:稳定 RNA 病毒诱导基因沉默载体中的发夹插入
- 批准号:
2330663 - 财政年份:2024
- 资助金额:
$ 6.37万 - 项目类别:
Standard Grant
I-Corps: Translation potential of a miniaturized biotechnology platform for nucleic acid extraction, purification, and library preparation
I-Corps:用于核酸提取、纯化和文库制备的小型生物技术平台的转化潜力
- 批准号:
2421022 - 财政年份:2024
- 资助金额:
$ 6.37万 - 项目类别:
Standard Grant
NSF Convergence Accelerator Track M: Biofilm-based Corrosion Control using 3D Printed Biotechnology
NSF 融合加速器轨道 M:使用 3D 打印生物技术进行基于生物膜的腐蚀控制
- 批准号:
2344389 - 财政年份:2024
- 资助金额:
$ 6.37万 - 项目类别:
Standard Grant
Engineering Biology Hub for environmental processing and recovery of metals; from contaminated land to industrial biotechnology in a circular economy
用于环境处理和金属回收的工程生物中心;
- 批准号:
BB/Y008456/1 - 财政年份:2024
- 资助金额:
$ 6.37万 - 项目类别:
Research Grant
Development of magnetic force biotechnology to facilitate neural regeneration
开发磁力生物技术促进神经再生
- 批准号:
EP/X014126/1 - 财政年份:2023
- 资助金额:
$ 6.37万 - 项目类别:
Research Grant