Transforming smartphones into active sonar systems to detect opioid overdose
将智能手机转变为主动声纳系统以检测阿片类药物过量
基本信息
- 批准号:9906080
- 负责人:
- 金额:$ 22.35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-30 至 2020-03-31
- 项目状态:已结题
- 来源:
- 关键词:AcuteAlgorithmsAntidotesApneaApplications GrantsBiological SciencesBreathingBusinessesCapitalCellular PhoneCessation of lifeChestClinicalClinical ResearchCommunicationCommunitiesComputer softwareCouplingDataData AnalyticsData CollectionData Storage and RetrievalDatabasesDetectionDevicesEarly DiagnosisEmergency medical serviceEngineeringEnsureEpidemicEquipmentEventFamily memberFeedbackFrequenciesFriendsGoalsGoldHarm ReductionHealth Care CostsHealth Insurance Portability and Accountability ActHealth Services AccessibilityHumanImpairmentIndividualInfrastructureInjectionsInterventionLifeLocal GovernmentManufacturer NameMeasuresMedicalMethodsMonitorMovementNaloxoneNational Institute of Drug AbuseNotificationOpioidOverdosePatient MonitoringPerformancePhasePublic HealthPublishingRecoveryResearchResearch PersonnelRespirationRespiratory FailureResuscitationRiskRunningSalesSavingsSecureSmall Business Innovation Research GrantSupervisionSystemTechniquesTechnologyTelephoneTestingTherapeuticTimeTrainingTranslational ResearchUnited StatesVentilatory DepressionVisionbasecommercializationcostdigitalexperiencehealthy volunteerimprovedinnovationmeetingsmicrophonemobile applicationnovelopioid mortalityopioid overdoseopioid useopioid use disorderoverdose riskphase 2 studyportabilityprototypepublic health emergencyrespiratoryresponsesignal processingsonarsoundtreatment programusability
项目摘要
PROJECT SUMMARY/ABSTRACT
Opioid use disorder (OUD) and mortality from opioid overdose are significant public health concerns. Deaths
from opioid overdose are highly preventable with early detection and administration of naloxone. A key challenge
of the epidemic is that overdose victims often die because they are alone or among untrained or impaired
bystanders and thus do not receive timely resuscitation. There is an urgent, unmet need for a low-barrier, easily
scalable solution that can identify opioid overdoses in real-time and rapidly connect victims to naloxone therapy.
The goal of Sound Life Sciences’ (SLS) Fast-Track proposal is to commercialize an innovative overdose
detection software product that can be downloaded on any commodity smartphone and can detect opioid-
induced respiratory failure (i.e., overdose) and summon help. The software-only product, SecondChance,
converts a smartphone into a short-range active sonar system capable of monitoring breathing and detecting
overdose. SecondChance requires no additional hardware and leverages the native speaker/microphone array
inside the phone and proprietary overdose detection signal processing algorithms. The software enables an
individual to monitor themselves when they are at risk for an overdose and, in the event of an overdose,
SecondChance can summon help, either from a friend or family member or from emergency medical services
(EMS). Sound Life Sciences’ long-term goal is to keep individuals with OUD safe until they are able to access
treatment and achieve durable recovery. In Phase I of this Fast-Track application, SLS will convert the
SecondChance prototype (for which feasibility has been established) into a minimum viable product (MVP) based
on rapid iteration guided by feedback and usability testing. In Phase II, using human factors engineering
approaches, SLS will complete the SecondChance System and systematically validate each component: the
patient monitoring app, the HIPAA-compliant data collection and storage infrastructure, and the emergency
services integration. The Phase II studies will culminate in a 510(k) submission to the FDA. The SecondChance
System will be marketed to naloxone manufacturers, local governments and people with OUD to ensure rapid
dissemination to at-risk individuals. Given the number of people with OUD and costs associated with opioid
overdose, there is a substantial market for the SecondChance System.
项目摘要/摘要
阿片类药物使用障碍(OUD)和阿片类药物过量导致的死亡率是重大的公共卫生问题。死亡
通过早期发现和使用纳洛酮,阿片类药物过量是高度可以预防的。一项关键挑战
这种流行病的一个特点是,过量服药的受害者往往因为孤独或处于未受过训练或身体受损的人群中而死亡。
旁观者因此得不到及时的复苏。很容易就有一种迫切的、尚未得到满足的低门槛需求
可扩展的解决方案,可以实时识别阿片类药物过量,并快速将受害者连接到纳洛酮治疗。
健全生命科学(SLS)快速通道提案的目标是将一种创新的过量用药商业化
可以在任何商用智能手机上下载并可以检测阿片类药物的检测软件产品-
致呼吸衰竭(即服药过量)和呼救。仅限软件的产品Second Chance,
将智能手机转换为能够监测呼吸和检测的短距离主动声纳系统
服药过量。Second Chance不需要额外的硬件,并利用本地扬声器/麦克风阵列
内置手机和专有的服药过量检测信号处理算法。该软件支持
当个人面临服药过量的风险时,以及在服药过量的情况下,
Second Chance可以从朋友、家人或紧急医疗服务机构寻求帮助
(EMS)。Sound Life Science的长期目标是确保拥有OUD的个人的安全,直到他们能够访问
治疗和实现持久康复。在此Fast-Track应用程序的第一阶段,SLS将把
基于最小可行产品(MVP)的Second Chance原型(已确定其可行性)
在反馈和可用性测试的指导下进行快速迭代。在第二阶段,使用人因工程学
方法,SLS将完成Second Chance系统并系统地验证每个组件:
患者监护应用程序、符合HIPAA标准的数据收集和存储基础设施以及紧急情况
服务整合。第二阶段的研究将最终提交给FDA的510(K)计划。第二次机会
该系统将向纳洛酮制造商、地方政府和有OUD的人销售,以确保快速
传播给高危人群。考虑到与阿片类药物相关的OUD人数和费用
由于服药过量,Second Chance系统有很大的市场。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nicholas Maxwell Mark其他文献
Nicholas Maxwell Mark的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 22.35万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 22.35万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 22.35万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 22.35万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 22.35万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 22.35万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 22.35万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 22.35万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 22.35万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 22.35万 - 项目类别:
Continuing Grant