Center for Human Reference Genome Diversity
人类参考基因组多样性中心
基本信息
- 批准号:9905992
- 负责人:
- 金额:$ 335.06万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-18 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmsAttentionBackBiologyBlood specimenBudgetsCallbackCell LineCentromereChromosomesCodeCollectionCommunitiesComplexConsentCountryDNADataData AnalysesDiploidyDiseaseEnsureEthicsEvaluationFeedbackFosteringFoundationsFutureGene FrequencyGenetic DiseasesGenetic VariationGenomeGenomic medicineGenomicsGoalsHaploidyHaplotypesHealthHumanHuman GeneticsHuman GenomeHuman ResourcesIndividualInformaticsInformation DisseminationInformed ConsentInstitutesInternationalLinkManualsMedical centerMethodsNational Human Genome Research InstituteNew YorkNucleotidesPatientsPersonsPhasePopulationProductionProtocols documentationRepetitive SequenceResearchResearch PersonnelResourcesSample SizeSamplingStructureTechnologyThird Generation SequencingTimeValidationVariantWorkbasebiobankcloud platformcohortcomputerized data processingcostdata sharingdata warehousegenetic variantgenome sequencinghuman reference genomelymphoblastoid cell linenew technologynoveloutreachpan-genomepreventprogramsreference genomesample collectionscaffoldtelomerevertebrate genome
项目摘要
Project Abstract
The goal of our Center for Human Reference Genome Diversity is to generate as error-free, gapless, complete,
and correctly haplotype-phased genome assemblies as possible from a set of 350 persons comprehensively
capturing the full extent of human diversity. We aim to capture >99% of allelic variants with >1% allele
frequency, and to provide these genomes as a resource to the international community to enable genomic
medicine and research addressing fundamental unanswered questions in biology and disease. We will employ
a multi-platform approach using cutting-edge long read and linked read technologies to obtain the highest
quality phased genomes. Aim 1 will focus on sample collection and procuring cell lines from at least 350
individuals with a specific emphasis on filling in gaps in human diversity. Aim 2 will generate highly contiguous
chromosomal level assemblies that are over 99% haplotype-phased for at least 700 haploid genomes from 350
diploid samples. Aim 3 will finish these genomes to be gapless from telomere-to-telomere (T2T) for each
chromosome. Aim 4 will evaluate the genomes for accuracy and completeness and perform initial variant
calling to assess the level of human diversity. We will use a novel combination of technologies, sequencing
strategies, and algorithms that we and others developed to produce the highest quality and most complete
genome assemblies to date. Our effort will specifically target regions that have been excluded by other efforts,
including segmental duplications, centromeres, and acrocentric DNA. To achieve these aims we have
assembled an exceptional team consisting of leaders from around the world in consent ethics, sample
collection, sample extraction, and high-quality genome sequencing, assembly, finishing and evaluation. The
team also has expertise in using genomic technologies to address a broad range of scientific questions, so is
highly cognizant of the practical needs of biomedical researchers who will use this resource. The high-quality
genomes produced will be passed to the Human Reference Genome Center (HGRC) and Genome Reference
Representation (GRR) groups for curation and release. The result will be a pan-human genome reference,
representing important human diversity not present in the current reference genome. The data we generate will
enable a fundamental shift in human genetics, fostering new discoveries from the single-nucleotide to
chromosomal levels and revealing a more accurate and global view of the human population.
项目摘要
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Evan Eichler其他文献
Evan Eichler的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Evan Eichler', 18)}}的其他基金
Diversity Action Plan: UW GenOM Project
多样性行动计划:华盛顿大学 GenOM 项目
- 批准号:
10189329 - 财政年份:2020
- 资助金额:
$ 335.06万 - 项目类别:
An "Embedded ELSI" Approach to the Creation of a Novel Human PanGenome Reference: Administrative Supplement to the Center for Human Reference Genome Diversity
创建新型人类泛基因组参考的“嵌入式 ELSI”方法:人类参考基因组多样性中心的行政补充
- 批准号:
10622227 - 财政年份:2019
- 资助金额:
$ 335.06万 - 项目类别:
ELSI Administrative Supplement - Center for Human Reference Genome Diversity
ELSI 行政补充 - 人类参考基因组多样性中心
- 批准号:
10423448 - 财政年份:2019
- 资助金额:
$ 335.06万 - 项目类别:
Sequence-resolved structural variation of human genomes
人类基因组的序列解析结构变异
- 批准号:
10202688 - 财政年份:2018
- 资助金额:
$ 335.06万 - 项目类别:
Sequence resolution of complex human genome structural variation
复杂人类基因组结构变异的序列解析
- 批准号:
10656792 - 财政年份:2018
- 资助金额:
$ 335.06万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 335.06万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 335.06万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 335.06万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 335.06万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 335.06万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 335.06万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 335.06万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 335.06万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 335.06万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 335.06万 - 项目类别:
Continuing Grant














{{item.name}}会员




