Prediction of Recurrent Anterior Shoulder Instability Using the On/Off Track Method and 3D MRI: A Clinical Outcomes and Cost-Effectiveness Study
使用 On/Off Track 方法和 3D MRI 预测复发性肩部前不稳定:临床结果和成本效益研究
基本信息
- 批准号:9902331
- 负责人:
- 金额:$ 42.13万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-07-01 至 2023-04-30
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAlgorithmsAnatomyAnteriorBone InjuryCaliberClinicalConflict (Psychology)DataEvaluationFailureFractureHeadImageImaging TechniquesIncidenceIndividualInjuryJoint CapsuleLeadLesionLiteratureLocationMagnetic Resonance ImagingMeasurementMeasuresMethodsModelingOperative Surgical ProceduresOutcomePatient-Focused OutcomesPatientsPersonsPlayPostoperative PeriodQuality of lifeRadiationRecording of previous eventsRecurrenceReference StandardsReportingRetrospective cohortRiskRisk FactorsRoleSelection for TreatmentsShoulderSoft Tissue InjuriesSymptomsTechniquesTimeUnited Statesbasebipolar bone lossbone lossclinical practicecostcost effectivecost effectivenesshumerusimage reconstructionimprovedmarkov modelminimal riskpatient populationrepairedsoft tissuesurgery outcomethree-dimensional modelingtissue repairtool
项目摘要
PROJECT SUMMARY
Anterior shoulder instability (ASI) is one of the most common shoulder ailments in the United States.1 A large
proportion of ASI patients undergo surgical stabilization, typically arthroscopic soft tissue repair (i.e. repair of
the labrum and/or joint capsule), with approximately 260,000 surgeries of this type performed each year in the
United States.2,3 While the majority of these cases are successful, up to 35% are considered clinical failures
due to recurrent ASI and/or persistent limited shoulder function.4,5 One of the major reasons for failure of
arthroscopic repair in ASI patients is the inadequate evaluation and treatment of bone injuries that occur in this
clinical setting, humeral Hill Sachs lesions and anterior glenoid bone loss, (i.e. bipolar bone loss), reported to
be the cause of recurrent ASI after surgery in up to 67% of patients.6 MRI plays a crucial role in the
preoperative evaluation of patients with ASI, providing important information on the associated soft tissue and
bone injuries. Prior studies have defined imaging based thresholds of “significant” bone loss at the humerus
and glenoid that are used to guide the selection of treatment with the location of greatest bone injury typically
determining management. However, the utility of these thresholds and the consideration of only one bone
injury have come into question with several studies demonstrating conflicting treatment results and patient
outcomes using these techniques. More recently, greater emphasis has been put on the potential interaction
between these injuries rather than their sizes as the main risk factor for recurrent ASI. To improve the
preoperative evaluation of bipolar bone loss, we will develop and optimize a new imaging strategy that consists
of an imaging technique, 3D MRI, and imaging measurement tool, the On/Off Track method, that can be easily
implemented into clinical practice. 3D MRI reconstructions are created using standard imaging data and
minimal post processing time without the cost and radiation associated with other 3D models. The On/Off
Track method is a technique that uses simple measurements of bipolar bone loss to assess the potential for
interaction between these osseous injuries in order to predict recurrent ASI. We will examine the value of the
On/Off Track method on MRI with 3D MRI models in predicting which patients with a history of ASI will be
considered a failure within 24 months of surgery. We will also determine the most cost-effective pre-operative
imaging strategy for patients with a history of ASI. This study will establish a new cost-effective MRI strategy
for the assessment of bipolar bone loss in the patient with ASI, which can be used to select the most
appropriate initial treatment and improve patient outcomes.
项目总结
肩前不稳(ASI)是美国最常见的肩部疾病之一。
ASI患者接受手术稳定的比例,通常是关节镜下软组织修复(即修复
唇部和/或关节囊),每年约有260,000例这种类型的手术在
2.3虽然这些病例大多数是成功的,但多达35%的病例被认为是临床失败
由于复发性ASI和/或持续性有限肩功能。4,5失败的主要原因之一
ASI患者的关节镜修复是对发生在此的骨损伤的不充分的评估和治疗。
临床背景、肱骨Hill Sachs损害和前关节突骨丢失(即双极骨丢失),据报道
是高达67%的患者术后ASI复发的原因。6MRI在
ASI患者的术前评估,提供有关相关软组织和
骨头受伤。先前的研究已经定义了基于成像的肱骨“显著”骨质丢失的阈值
以及用于指导具有最大骨损伤位置的治疗选择的关节臼通常
决定管理层。然而,这些阈值的实用性以及只考虑一块骨骼的情况
随着几项研究显示治疗结果和患者相互矛盾,损伤已经成为问题
使用这些技术的结果。最近,人们更多地强调了潜在的相互作用
这些损伤之间的关系,而不是它们的大小是ASI复发的主要危险因素。为了改善
双极骨丢失的术前评估,我们将开发和优化一种新的成像策略,包括
成像技术、3D MRI和成像测量工具,即开/离轨道方法,可以很容易地
落实到临床实践中。3D MRI重建是使用标准成像数据和
最短的后期处理时间,没有与其他3D模型相关的成本和辐射。开/关
跟踪法是一种技术,它使用双极骨丢失的简单测量来评估
这些骨损伤之间的相互作用,以预测复发的ASI。我们将研究
MRI上的在轨/脱轨方法结合3D MRI模型预测有ASI病史的患者
在手术后24个月内被认为失败。我们还将确定最具成本效益的术前
有ASI病史患者的影像策略。这项研究将建立一种新的具有成本效益的MRI策略
对于ASI患者双极骨丢失的评估,可以用来选择最
适当的初步治疗和改善患者的预后。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Soterios Gyftopoulos其他文献
Soterios Gyftopoulos的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Soterios Gyftopoulos', 18)}}的其他基金
Prediction of Recurrent Anterior Shoulder Instability Using the On/Off Track Method and 3D MRI: A Clinical Outcomes and Cost-Effectiveness Study
使用 On/Off Track 方法和 3D MRI 预测复发性肩部前不稳定:临床结果和成本效益研究
- 批准号:
10396027 - 财政年份:2018
- 资助金额:
$ 42.13万 - 项目类别:
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 42.13万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 42.13万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 42.13万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 42.13万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 42.13万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 42.13万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 42.13万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 42.13万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 42.13万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 42.13万 - 项目类别:
Research Grant