A Neural Circuit of Energy Expenditure Preventing Obesity
预防肥胖的能量消耗神经回路
基本信息
- 批准号:9901506
- 负责人:
- 金额:$ 22.84万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-04-01 至 2021-02-01
- 项目状态:已结题
- 来源:
- 关键词:AcuteAffinity ChromatographyAnimalsAttenuatedAutomobile DrivingBody WeightBrainBrain StemBrain imagingBrown FatCaloriesCellsChemistryDevelopmentDietDynorphinsEatingEnergy MetabolismEnvironmentEquilibriumFeeding behaviorsFood EnergyGeneticHigh Fat DietHypothalamic structureIntakeLabelLeftLeptinMediatingMetabolic DiseasesModelingMonitorMusNeuronsNucleus solitariusNutritional statusObesityOpticsOutputPathway interactionsPharmacogeneticsPhysiologic ThermoregulationPhysiologicalProcessRabies virusRegulationResearchRibosomesRoleSignal TransductionStructure of nucleus infundibularis hypothalamiSurveysSynapsesTechnologyTestingThermogenesisTransgenic MiceTranslatingVirusbasedesigner receptors exclusively activated by designer drugsfeedinggamma-Aminobutyric Acidimaging approachin vivoinfancyinterestneural circuitneurobiological mechanismneuromechanismneuroregulationneurotransmissionneurotransmitter releasenovelobesity treatmentoptogeneticsparaventricular nucleuspreventpublic health relevancerelating to nervous systemsuccesstool
项目摘要
DESCRIPTION (provided by applicant): Neurons in the brain detect changes in nutritional status and environment, and relay signals to their downstream targets to regulate food intake and energy expenditure, the balance of which is critical to maintain normal body weight and protect from obesity. Given the complexity of the brain, the neurobiological mechanisms underlying these processes are poorly understood. Efficient treatment of obesity is thus still lacking. Although a lot of success has been recently achieved in dissecting the neural circuitry of feeding behaviors, the research to understand the neural basis of energy expenditure is still in its infancy. In a recent study, we focused on a group of hypothalamic neurons labeled by cre activity in Rip-cre transgenic mice, thereafter referred to as "RIP" neurons, and uncovered an arcuate-based circuit that selectively drives brown adipose tissue (BAT) activity and energy expenditure. Specifically, we disrupted GABAergic neurotransmission from these neurons in a cre-dependent manner and observed that mice lacking synaptic GABA release from RIP neurons have reduced energy expenditure and become obese, and are extremely sensitive to high fat diet-induced obesity due to defective thermogenesis. Leptin's ability to stimulate energy expenditure is also attenuated in these animals. With pharmacogenetic DREADDs, we acutely and selectively activated the subset of RIP neurons in the arcuate nucleus (ARC) and rapidly stimulated BAT-mediated energy expenditure. Moreover, with channelrhodopsin-assisted circuit mapping (CRACM), we characterized that ARC RIP neurons project to the paraventricular nucleus (PVH) and specifically innervate the PVH neurons that project to the nucleus of solitary tract (NTS) in the brain stem. Of great interest, we observed that RIP neurons have no effects in regulating food intake. These findings demonstrate that GABAergic RIP neurons in the ARC selectively drive energy expenditure, contribute to leptin's stimulatory effect on thermogenesis, and protect against diet-induced obesity. Given the importance of these neurons in maintaining body weight and resisting obesity, it is crucial to comprehensively understand their related neural circuitry. In Aim 1, we set out to employ advanced optogenetic and deep brain imaging approaches to investigate the regulations of RIP neurons during thermoregulation and functionally assess their projection to the PVH in stimulating energy expenditure. In Aim 2, we will focus on the output signals of RIP neurons in the PVH and identify their efferent subset of neurons that convey their signals to the BAT. Finally, in Aim 3, we will survey the afferent inputs
of RIP neurons within a microcircuit in the arcuate nucleus and scrutinize their functions in regulating energy expenditure. In total, these proposed studies could significantly advance our understanding of the neural basis of energy expenditure and provide novel information to prevent obesity.
描述(由申请人提供):大脑中的神经元检测营养状况和环境的变化,并将信号传递给下游目标以调节食物摄入和能量消耗,其中的平衡对于维持正常体重和防止肥胖至关重要。鉴于大脑的复杂性,人们对这些过程背后的神经生物学机制知之甚少。因此仍然缺乏有效的肥胖治疗方法。尽管最近在剖析进食行为的神经回路方面取得了很多成功,但了解能量消耗的神经基础的研究仍处于起步阶段。在最近的一项研究中,我们重点研究了 Rip-cre 转基因小鼠中一组由 cre 活性标记的下丘脑神经元(此后称为“RIP”神经元),并发现了一个基于弓形的电路,可以选择性地驱动棕色脂肪组织(BAT)活动和能量消耗。具体来说,我们以一种依赖于cre的方式破坏了这些神经元的GABA能神经传递,并观察到缺乏RIP神经元突触GABA释放的小鼠能量消耗减少并变得肥胖,并且由于产热缺陷而对高脂肪饮食引起的肥胖极其敏感。在这些动物中,瘦素刺激能量消耗的能力也减弱了。通过药物遗传学 DREADD,我们敏锐地、选择性地激活了弓状核 (ARC) 中的 RIP 神经元子集,并快速刺激了 BAT 介导的能量消耗。此外,通过视紫红质通道辅助电路图谱(CRACM),我们发现ARC RIP神经元投射到室旁核(PVH),并特异性地支配投射到脑干孤束核(NTS)的PVH神经元。非常有趣的是,我们观察到 RIP 神经元在调节食物摄入方面没有作用。这些发现表明,ARC 中的 GABA 能 RIP 神经元选择性地驱动能量消耗,有助于瘦素对产热的刺激作用,并防止饮食引起的肥胖。鉴于这些神经元在维持体重和抵抗肥胖方面的重要性,全面了解其相关的神经回路至关重要。在目标 1 中,我们着手采用先进的光遗传学和深部脑成像方法来研究 RIP 神经元在温度调节过程中的调节,并在功能上评估它们在刺激能量消耗时对 PVH 的投射。在目标 2 中,我们将重点关注 PVH 中 RIP 神经元的输出信号,并识别将其信号传递至 BAT 的神经元传出子集。最后,在目标 3 中,我们将调查传入输入
弓状核微电路内的 RIP 神经元,并仔细检查它们在调节能量消耗方面的功能。总的来说,这些拟议的研究可以显着增进我们对能量消耗的神经基础的理解,并提供预防肥胖的新信息。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dong Kong其他文献
Dong Kong的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dong Kong', 18)}}的其他基金
ACSL4 on the interface of metabolism and mental health
ACSL4 代谢与心理健康的界面
- 批准号:
9789685 - 财政年份:2018
- 资助金额:
$ 22.84万 - 项目类别:
A Neural Circuit of Energy Expenditure Preventing Obesity
预防肥胖的能量消耗神经回路
- 批准号:
10469923 - 财政年份:2016
- 资助金额:
$ 22.84万 - 项目类别:
A Neural Circuit of Energy Expenditure Preventing Obesity
预防肥胖的能量消耗神经回路
- 批准号:
9076752 - 财政年份:2016
- 资助金额:
$ 22.84万 - 项目类别:
A Neural Circuit of Energy Expenditure Preventing Obesity
预防肥胖的能量消耗神经回路
- 批准号:
9240624 - 财政年份:2016
- 资助金额:
$ 22.84万 - 项目类别:
A Neural Circuit of Energy Expenditure Preventing Obesity
预防肥胖的能量消耗神经回路
- 批准号:
10481341 - 财政年份:2016
- 资助金额:
$ 22.84万 - 项目类别:
Genetic and Optic Dissection of AMPK Dynamics in Neurotransmission
神经传递中 AMPK 动力学的遗传和光学解剖
- 批准号:
9165641 - 财政年份:2016
- 资助金额:
$ 22.84万 - 项目类别:
Dendritic Spines on AgRP Neurons as Communication Hubs Controlling Feeding
AgRP 神经元上的树突棘作为控制进食的通讯中心
- 批准号:
8846106 - 财政年份:2013
- 资助金额:
$ 22.84万 - 项目类别:
Dendritic Spines on AgRP Neurons as Communication Hubs Controlling Feeding
AgRP 神经元上的树突棘作为控制进食的通讯中心
- 批准号:
8509162 - 财政年份:2013
- 资助金额:
$ 22.84万 - 项目类别:
Dendritic Spines on AgRP Neurons as Communication Hubs Controlling Feeding
AgRP 神经元上的树突棘作为控制进食的通讯中心
- 批准号:
8786984 - 财政年份:2013
- 资助金额:
$ 22.84万 - 项目类别:
相似海外基金
Cellular membrane affinity chromatography kit for drug discovery
用于药物发现的细胞膜亲和层析试剂盒
- 批准号:
10506915 - 财政年份:2021
- 资助金额:
$ 22.84万 - 项目类别:
Cellular membrane affinity chromatography kit for drug discovery
用于药物发现的细胞膜亲和层析试剂盒
- 批准号:
10325006 - 财政年份:2021
- 资助金额:
$ 22.84万 - 项目类别:
SBIR Phase I: A New Class of Immobilized Metal Affinity Chromatography Resins
SBIR 第一阶段:一类新型固定金属亲和色谱树脂
- 批准号:
1746198 - 财政年份:2018
- 资助金额:
$ 22.84万 - 项目类别:
Standard Grant
Marine speciation of nickel using immobilized nickel affinity chromatography
使用固定镍亲和色谱法测定镍的海洋形态
- 批准号:
512537-2017 - 财政年份:2017
- 资助金额:
$ 22.84万 - 项目类别:
University Undergraduate Student Research Awards
I-Corps: Commercialization of Immobilized Metal Affinity Chromatography Resins Based on Nanomaterials
I-Corps:基于纳米材料的固定化金属亲和层析树脂的商业化
- 批准号:
1404605 - 财政年份:2014
- 资助金额:
$ 22.84万 - 项目类别:
Standard Grant
Antibody Purification via Affinity Chromatography that Utilizes the Unconventional Nucleotide Binding Site
利用非常规核苷酸结合位点通过亲和色谱法纯化抗体
- 批准号:
1263713 - 财政年份:2013
- 资助金额:
$ 22.84万 - 项目类别:
Continuing Grant
Development of multivalent DNA network based affinity chromatography diagnostics for isolating circulating tumour cells
开发基于多价 DNA 网络的亲和色谱诊断法,用于分离循环肿瘤细胞
- 批准号:
425749-2012 - 财政年份:2012
- 资助金额:
$ 22.84万 - 项目类别:
Postgraduate Scholarships - Master's
Next-Generation Affinity Chromatography with PEGylated Ligands
使用聚乙二醇化配体的新一代亲和色谱法
- 批准号:
1159886 - 财政年份:2012
- 资助金额:
$ 22.84万 - 项目类别:
Standard Grant
Immobilized zirconium ion affinity chromatography for specific enrichment of phosphoproteins
用于磷蛋白特异性富集的固定化锆离子亲和层析
- 批准号:
19560760 - 财政年份:2007
- 资助金额:
$ 22.84万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Accelerating drug discovery using frontal affinity chromatography/mass spectrometry
使用正面亲和色谱/质谱加速药物发现
- 批准号:
234753-2000 - 财政年份:2003
- 资助金额:
$ 22.84万 - 项目类别:
Collaborative Research and Development Grants














{{item.name}}会员




