Distance-based Panomic Analytics for Microbiome Data

基于距离的微生物组数据全景分析

基本信息

项目摘要

PROJECT SUMMARY Our ability to study the microbiomes is enabled by the same technologies that allow us to quantify the host physiological state at greater depth and precision, including advanced high-throughput sequencing for genomics and transcriptomics; mass spectrometry for metabolomics, proteomics, and lipidomics; and flow-cytometry for characterization of circulating cell populations. The integration of host and microbiome panomic data is the roadmap for future biomedical discoveries. One example of such studies is the Integrative Human Microbiome Project (iHMP), which is currently generating panomic data on microbes and their host environment in three different diseases (diabetes, irritable bowel disease, pre-term delivery). Lack of appropriate analytics for these data and a steep curve for their validation and adoption is a major concern for the community. The main challenge of inference in panomic-scale microbiome datasets is overcoming the ‘curses of dimensionality’. Local causal learning has proven useful for making discoveries with high-dimensional data, while distance-based learning is a promising paradigm for multivariate data analysis. We are proposing to combine these to develop the next generation of panomic data analytics and make these tools available directly to the biomedical investigators. The aims of this project are: (1) Develop analytics for distance-based omnibus panomic integration; (2) Develop methodology for top-down distance-based sub-system interdependence learning. The overarching goal is to develop user-facing applications utilizing the methodologies in Aims 1 and 2 and apply those in several existing studies generating panomic data. The analytics, applications, and educational resources (case studies and tutorials) resulting from this project will enable the biomedical community to study panomic-scale datasets in a coherent and comprehensive way. The methods and tools resulting from this project will support new biomedical discoveries. ! !
项目总结

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alexander V Alekseyenko其他文献

Erratum to: Enrichment of lung microbiome with supraglottic taxa is associated with increased pulmonary inflammation
  • DOI:
    10.1186/2049-2618-2-21
  • 发表时间:
    2014-07-02
  • 期刊:
  • 影响因子:
    12.700
  • 作者:
    Leopoldo N Segal;Alexander V Alekseyenko;Jose C Clemente;Rohan Kulkarni;Benjamin Wu;Zhan Gao;Hao Chen;Kenneth I Berger;Roberta M Goldring;William N Rom;Martin J Blaser;Michael D Weiden
  • 通讯作者:
    Michael D Weiden
Natural Language Processing and Social Determinants of Health in Mental Health Research: AI-Assisted Scoping Review
心理健康研究中的自然语言处理与健康的社会决定因素:人工智能辅助范围审查
  • DOI:
    10.2196/67192
  • 发表时间:
    2025-01-01
  • 期刊:
  • 影响因子:
    5.800
  • 作者:
    Dmitry A Scherbakov;Nina C Hubig;Leslie A Lenert;Alexander V Alekseyenko;Jihad S Obeid
  • 通讯作者:
    Jihad S Obeid

Alexander V Alekseyenko的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alexander V Alekseyenko', 18)}}的其他基金

SC Biomedical Informatics & Data Science For Health Equity Research Training (SC BIDS4HEALTH)
SC生物医学信息学
  • 批准号:
    10406056
  • 财政年份:
    2022
  • 资助金额:
    $ 32.71万
  • 项目类别:
SC Biomedical Informatics & Data Science For Health Equity Research Training (SC BIDS4HEALTH)
SC生物医学信息学
  • 批准号:
    10616813
  • 财政年份:
    2022
  • 资助金额:
    $ 32.71万
  • 项目类别:
Increasing Access to Clinical Microbiome Specimens via a Living µbiome Bank
通过活体微生物组库增加对临床微生物组样本的获取
  • 批准号:
    9761606
  • 财政年份:
    2018
  • 资助金额:
    $ 32.71万
  • 项目类别:

相似海外基金

CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 32.71万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 32.71万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 32.71万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 32.71万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 32.71万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 32.71万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 32.71万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 32.71万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 32.71万
  • 项目类别:
    Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 32.71万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了