Targeted Exosome-Associated AAV-Mediated Gene Therapy to Eliminate Metastatic Neuroendocrine Cancers

靶向外泌体相关 AAV 介导的基因治疗可消除转移性神经内分泌癌

基本信息

项目摘要

ABSTRACT Neuroendocrine (NE) malignancies are hormone secreting neoplasms that arise from endocrine and nervous system. Multiple NE tumors (NETs) have been diagnosed, such as pancreatic neuroendocrine cancers, medullary thyroid cancers, and pulmonary neuroendocrine carcinoids. Most NE cancer patients are metastatic at the time of initial diagnosis which makes the complete resections via surgery impossible. The current chemotherapies, including Octreotide, Sunitinib, Everolimus and peptide receptor, have marginal curative benefits and severe side effects. Thus, an effective targeted therapy is critical for patients with metastatic NE cancers. We have recently developed a novel technique, named “mitochondrial chemo-optogenetics”, by expressing a heterologous light-gated channelrhodopsin protein in the IMM of cancer cells, and depolarizing IMM potentials and inducing cell death by using luciferase-luciferin bioluminescence as the endogenous light source. Our preliminary data showed that this new mitochondrial gene therapy caused substantial NE cancer cell death in vitro and stopped NE tumor growth and even reduced tumor size in a subcutaneous NE cancer xenograft mouse model. Additionally, we have built an innovative NE cancer-targeted gene delivery platform by tagging our new anti-somatostatin receptor 2 (SSTR2) monoclonal antibody (mAb) to the surface of exosome. However, a targeted gene therapy, such as mAb-Exo-AAV carrying our mitochondrial chemo-optogenetics therapeutic gene, is urgently needed to achieve substrate-induced mitochondrial depolarization and selective elimination of cancer cells in vivo. Moreover, the therapeutic efficacy of the gene therapy in metastatic a model is essential because most diagnosed NE cancer patients are metastatic. The specific objective of this application is to develop, produce and evaluate an innovative NE cancer-targeted mitochondrial gene therapy to selectively destroy and eliminate NETs in vivo. The following two specific aims over a 12-month period are propose. Aim 1: To develop, produce and characterize the NE-cancer targeted mitochondrial gene therapy. A high-quality anti-SSTR2 mAb-Exo-AAV will be constructed by cloning a cancer promoter (cfos) and the fused blue light- producing luciferase and light-gated rhodopsin gene, i.e. cfos-NLuc-2A-ABCB-CoChR (~3.3 kb), into the engineered pAAV-MCS promoterless expression vector, and produced using our stirred-tank bioreactor-based exosome-AAV biomanufacturing platform and surface tagging technology. The anti-SSTR2 mAb-Exo-AAV will then be evaluated for its cancer specific targeting and in vitro anti-cancer efficacy. Aim 2: To evaluate the therapeutic values of the mitochondrial gene therapy using preclinical NET metastatic animal model. Most NE cancer patients are initially diagnosed with metastases and have already developed carcinoid syndrome. Therefore we will evaluate the maximal tolerated dose (MTD), pharmacokinetics (PK), anti- NET efficacy, and liver metastases reduction of the developed gene therapy using metastatic model.
摘要

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Joseph N Garner其他文献

Joseph N Garner的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

Quantification of Neurovasculature Changes in a Post-Hemorrhagic Stroke Animal-Model
出血性中风后动物模型中神经血管变化的量化
  • 批准号:
    495434
  • 财政年份:
    2023
  • 资助金额:
    $ 24.31万
  • 项目类别:
Small animal model for evaluating the impacts of cleft lip repairing scar on craniofacial growth and development
评价唇裂修复疤痕对颅面生长发育影响的小动物模型
  • 批准号:
    10642519
  • 财政年份:
    2023
  • 资助金额:
    $ 24.31万
  • 项目类别:
Bioactive Injectable Cell Scaffold for Meniscus Injury Repair in a Large Animal Model
用于大型动物模型半月板损伤修复的生物活性可注射细胞支架
  • 批准号:
    10586596
  • 财政年份:
    2023
  • 资助金额:
    $ 24.31万
  • 项目类别:
A Comparison of Treatment Strategies for Recovery of Swallow and Swallow-Respiratory Coupling Following a Prolonged Liquid Diet in a Young Animal Model
幼年动物模型中长期流质饮食后吞咽恢复和吞咽呼吸耦合治疗策略的比较
  • 批准号:
    10590479
  • 财政年份:
    2023
  • 资助金额:
    $ 24.31万
  • 项目类别:
Diurnal grass rats as a novel animal model of seasonal affective disorder
昼夜草鼠作为季节性情感障碍的新型动物模型
  • 批准号:
    23K06011
  • 财政年份:
    2023
  • 资助金额:
    $ 24.31万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Longitudinal Ocular Changes in Naturally Occurring Glaucoma Animal Model
自然发生的青光眼动物模型的纵向眼部变化
  • 批准号:
    10682117
  • 财政年份:
    2023
  • 资助金额:
    $ 24.31万
  • 项目类别:
A whole animal model for investigation of ingested nanoplastic mixtures and effects on genomic integrity and health
用于研究摄入的纳米塑料混合物及其对基因组完整性和健康影响的整体动物模型
  • 批准号:
    10708517
  • 财政年份:
    2023
  • 资助金额:
    $ 24.31万
  • 项目类别:
A Novel Large Animal Model for Studying the Developmental Potential and Function of LGR5 Stem Cells in Vivo and in Vitro
用于研究 LGR5 干细胞体内外发育潜力和功能的新型大型动物模型
  • 批准号:
    10575566
  • 财政年份:
    2023
  • 资助金额:
    $ 24.31万
  • 项目类别:
Elucidating the pathogenesis of a novel animal model mimicking chronic entrapment neuropathy
阐明模拟慢性卡压性神经病的新型动物模型的发病机制
  • 批准号:
    23K15696
  • 财政年份:
    2023
  • 资助金额:
    $ 24.31万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
The effect of anti-oxidant on swallowing function in an animal model of dysphagia
抗氧化剂对吞咽困难动物模型吞咽功能的影响
  • 批准号:
    23K15867
  • 财政年份:
    2023
  • 资助金额:
    $ 24.31万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了