Improving Community Ambulation for Stroke Survivors using Powered Hip Exoskeletons with Adaptive Environmental Controllers
使用动力髋外骨骼和自适应环境控制器改善中风幸存者的社区行走
基本信息
- 批准号:9906245
- 负责人:
- 金额:$ 14.67万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-04-03 至 2022-03-31
- 项目状态:已结题
- 来源:
- 关键词:AffectArchitectureBiomechanicsCharacteristicsClinicalCommunitiesDevicesDisabled PersonsDiseaseDistalElderlyEnvironmentFoundationsFutureGaitGenerationsGoalsHealthHip JointHip region structureHumanImpairmentIndividualKineticsLeadLocomotionLower ExtremityMetabolicMovementMuscleMusculoskeletal DiseasesMusculoskeletal SystemNervous System TraumaOrthotic DevicesOutcomeOutputPatientsPatternPersonsPlayPopulationQuality of lifeRampResearchRoboticsRoleSelf-Help DevicesSideSpeedStrokeSystemTechnologyTestingTranslatingWalkingWorkbaseclinical effectdesigndisabilityexoskeletonexoskeleton deviceimprovedimproved mobilityinnovationinsightinterestkinematicslocomotor tasksnovelpatient populationpowered exoskeletonpublic health researchrobot exoskeletonstroke survivortreadmillwalking speed
项目摘要
Project Summary Abstract
The increased metabolic and biomechanical demands of ambulation limit community mobility in persons with
lower limb disability due to neurological damage. There is a critical need for improving the locomotion capabilities
of individuals who have walking impairments due to disease to increase their community mobility, independence,
and health. Robotic exoskeletons have the potential to assist these individuals by increasing community mobility
to improve quality of life. While these devices have incredible potential, current technology does not support
dynamic movements common with locomotion such as transitioning between different gaits and supporting a
wide variety of walking speeds. One significant challenge in achieving community ambulation with exoskeletons
is providing an adaptive control system to accomplish a wide variety of locomotor tasks. Many exoskeletons
today are developed without a detailed understanding of the effect of the device on the human musculoskeletal
system. This research is interested in studying the question of how the control system affects human
biomechanics including kinematic, kinetics and muscle activation patterns. By optimizing exoskeleton controllers
based on human biomechanics and adapting control based on task, the biggest benefit to patient populations
will be achieved to help advance the state-of-the-art with assistive hip exoskeletons.
The long-term research goal is to create powered assistive exoskeletons devices that are of great value to
individuals with serious lower limb disabilities by improving clinical outcomes such as walking speed and
community ambulation ability. The overall objective of the proposed project is to study the biomechanical
effects of using a hip exoskeleton with adaptive controllers for assisting stroke survivors with lower limb deficits
to improve their community ambulation capabilities. The central hypothesis overarching both aims is that
exoskeleton control that adapts to environmental terrain will improve mobility metrics for human exoskeleton
users on community ambulation tasks. The rationale is that since human biomechanics change based on task,
exoskeleton controllers likewise need to optimize their assistance levels to match what the human is doing.
The first aim of the research is to determine the benefit of adaptive control that changes based on
environmental conditions for improving community ambulation capability. The second aim will extend this
control architecture to stroke survivors with mobility impairment to provide adaptive assistance during
community ambulation conditions and quantify biomechanical and clinical improvements in gait. These aims
will have a positive impact by helping to inform the control and design of future powered exoskeletons for
assisting individuals with lower limb disabilities.
项目摘要
行走时代谢和生物力学需求的增加限制了患有以下疾病的人的社区活动能力
由于神经损伤导致下肢残疾。迫切需要提高运动能力
对因疾病而有行走障碍的个人,以增加他们的社区流动性,独立性,
与健康机器人外骨骼有可能通过增加社区流动性来帮助这些人
来提高生活质量。虽然这些设备具有令人难以置信的潜力,但目前的技术不支持
运动中常见的动态运动,例如在不同步态之间转换和支持
各种各样的步行速度。在用外骨骼实现社区步行的一个重大挑战是,
提供了一个自适应控制系统来完成各种各样的运动任务。许多外骨骼
在没有详细了解该装置对人体肌肉骨骼的影响的情况下,
系统本研究的目的是研究控制系统对人的影响
生物力学包括运动学、动力学和肌肉激活模式。通过优化外骨骼控制器
基于人体生物力学和基于任务的自适应控制,
将有助于推进最先进的辅助髋关节外骨骼。
长期的研究目标是创造动力辅助外骨骼设备,
通过改善临床结果(如步行速度),
社区可持续性。拟议项目的总体目标是研究生物力学
使用具有自适应控制器的髋关节外骨骼来辅助具有下肢缺陷的中风幸存者的效果
来提高他们的社区管理能力。这两个目标的核心假设是,
适应环境地形的外骨骼控制将改善人类外骨骼的移动性度量
用户在社区的任务。基本原理是,由于人体生物力学根据任务而变化,
外骨骼控制器同样需要优化其辅助水平以匹配人类正在做的事情。
本研究的第一个目的是确定自适应控制的好处,
改善社区卫生服务能力的环境条件。第二个目标将扩大这一点,
控制架构,为行动障碍的中风幸存者提供适应性帮助,
社区步行条件和量化步态的生物力学和临床改善。这些目标
将产生积极的影响,有助于为未来动力外骨骼的控制和设计提供信息,
协助下肢残疾人士。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Effects of Bilateral Assistance for Hemiparetic Gait Post-Stroke Using a Powered Hip Exoskeleton.
- DOI:10.1007/s10439-022-03041-9
- 发表时间:2023-02
- 期刊:
- 影响因子:3.8
- 作者:Pan, Yi-Tsen;Kang, Inseung;Joh, James;Kim, Patrick;Herrin, Kinsey R.;Kesar, Trisha M.;Sawicki, Gregory S.;Young, Aaron J.
- 通讯作者:Young, Aaron J.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Aaron John Young其他文献
Aaron John Young的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Aaron John Young', 18)}}的其他基金
A new framework for self-adaptive artificial intelligence to personalize assistance for patients using robotic exoskeletons and prostheses
自适应人工智能的新框架,可为使用机器人外骨骼和假肢的患者提供个性化帮助
- 批准号:
10472098 - 财政年份:2022
- 资助金额:
$ 14.67万 - 项目类别:
相似海外基金
Biomechanics and architecture of developing plant organs
植物器官发育的生物力学和结构
- 批准号:
RGPIN-2018-05762 - 财政年份:2022
- 资助金额:
$ 14.67万 - 项目类别:
Discovery Grants Program - Individual
Biomechanics and architecture of developing plant organs
植物器官发育的生物力学和结构
- 批准号:
RGPIN-2018-05762 - 财政年份:2021
- 资助金额:
$ 14.67万 - 项目类别:
Discovery Grants Program - Individual
Biomechanics and architecture of developing plant organs
植物器官发育的生物力学和结构
- 批准号:
RGPIN-2018-05762 - 财政年份:2020
- 资助金额:
$ 14.67万 - 项目类别:
Discovery Grants Program - Individual
Biomechanics and architecture of developing plant organs
植物器官发育的生物力学和结构
- 批准号:
RGPIN-2018-05762 - 财政年份:2019
- 资助金额:
$ 14.67万 - 项目类别:
Discovery Grants Program - Individual
Biomechanics and architecture of developing plant organs
植物器官发育的生物力学和结构
- 批准号:
RGPIN-2018-05762 - 财政年份:2018
- 资助金额:
$ 14.67万 - 项目类别:
Discovery Grants Program - Individual
Biomechanics and architecture of developing plant organs
植物器官发育的生物力学和结构
- 批准号:
DGECR-2018-00153 - 财政年份:2018
- 资助金额:
$ 14.67万 - 项目类别:
Discovery Launch Supplement
Evolution of Tree Design: Vascular Cambium Mechanics, Wood Parameters, Growth, and Architecture/Biomechanics of Earliest Trees
树木设计的演变:最早树木的维管形成层力学、木材参数、生长和结构/生物力学
- 批准号:
9982787 - 财政年份:2000
- 资助金额:
$ 14.67万 - 项目类别:
Continuing Grant
Biomechanics for Trabecular Architecture and Fracture Mechanism of Osteoporotic Cancellous Bone
骨质疏松松质骨小梁结构的生物力学和骨折机制
- 批准号:
08680944 - 财政年份:1996
- 资助金额:
$ 14.67万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The Biomechanics of Bat Flight: Skeletal Architecture and Functional Performance
蝙蝠飞行的生物力学:骨骼结构和功能表现
- 批准号:
9119413 - 财政年份:1992
- 资助金额:
$ 14.67万 - 项目类别:
Continuing Grant
Evolutionary History of Crinoid Stalks: Architecture, Connective Tissues, Biomechanics and Taphonomy
海百合茎的进化史:建筑学、结缔组织、生物力学和埋藏学
- 批准号:
9104892 - 财政年份:1991
- 资助金额:
$ 14.67万 - 项目类别:
Standard Grant