Defining the mechanisms of nuclear pore complex assembly in fission yeast
定义裂殖酵母核孔复合体组装的机制
基本信息
- 批准号:9909195
- 负责人:
- 金额:$ 6.53万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-06-05 至 2021-09-04
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalActive SitesAddressAffectAllelesAnimal ModelBindingCarrier ProteinsCellsChromosome StructuresColorComplexDevelopmentEnzymesEstrogen receptor positiveEukaryotaExclusionFission YeastGene ExpressionGeneticGenetic RecombinationGenetic TechniquesGoalsHeterogeneityHumanImageImage AnalysisImaging TechniquesInterphaseLightingLipidsMalignant NeoplasmsMammalsMembraneMembrane LipidsMembrane ProteinsMethodsMicroscopyMitosisModelingMolecularMonitorMutationNatureNuclearNuclear EnvelopeNuclear Inner MembraneNuclear Outer MembraneNuclear PoreNuclear Pore ComplexNuclear Pore Complex ProteinsOrganismOrthologous GeneProcessProteinsReportingResearch PersonnelResolutionRoleSaccharomycetalesShapesSignal TransductionStructureSystemTestingTrainingTwo-Hybrid System TechniquesVertebratesWorkYeastsbasecareerdensityenv Gene Productsgenetic approachhuman diseaseimaging approachimaging geneticsimaging platformin vivoinnovationinsightlipid metabolismmacromoleculemicroscopic imagingnovelnucleocytoplasmic transportparticlequantitative imagingresponsespindle pole bodytelophasethree dimensional structuretoolyeast geneticsyeast two hybrid system
项目摘要
PROJECT SUMMARY
Nuclear pore complexes (NPCs) span the inner and outer nuclear membranes and allow for the regulated
transport of macromolecules across the nuclear envelope. In addition, NPCs have important transport
independent functions, including influencing nuclear envelope dynamics and integrity, contributing to
chromosomal organization and regulating gene expression. Many features of NPC structure and function are
conserved throughout eukaryotes; however, NPC number, distribution, composition and function can change
dramatically during development and in response to environmental signals. Additionally, increased NPC density
has been observed in human diseases including cancer. Work in numerous organisms has identified the
conserved transmembrane nucleoporin Ndc1 as a key factor required for NPC assembly and insertion into the
nuclear envelope. However, the exact mechanism by which NPC insertion occurs remains unclear. Additionally,
attempts to dissect the role of Ndc1 and other putative insertion factors at NPCs in yeast have been complicated
by their dual functions in the insertion of the yeast spindle pole body. To overcome these issues, we have
developed innovative genetic and imaging approaches to characterize proteins that interact with the fission yeast
Ndc1 ortholog, Cut11. Using high-throughput membrane yeast-two hybrid screens, we identified novel Cut11
interacting proteins involved in lipid metabolism and membrane organization that are conserved in vertebrates
and have determined how these interactions are modulated by Cut11 mutations. We have also developed 3D
structured illumination microscopy and image analysis tools to allow us to visualize and quantify NPCs in vivo.
Importantly, this approach allows for determining NPC composition while maintaining single NPC resolution, and
has revealed a region with heterogenous NPC composition near the spindle pole body. We will utilize this
powerful imaging platform to determine whether the newly identified Cut11 interacting proteins localize to NPCs
and have a function in NPC assembly and insertion. We will also examine the molecular mechanisms that
regulate the localization of the conserved nuclear envelope protein Tts1 to the NPCs and clarify its role in NPC
assembly and distribution. Last, we will define the composition of NPCs in the region near the spindle pole body
and determine how this specialized pool of NPCs is established and maintained. These studies will expand our
understanding of how NPC assembly is regulated and will provide valuable insight into novel proteins with
potentially conserved functions in NPC assembly from yeast to mammals.
项目摘要
核孔复合物(NPC)跨越核膜内外,并允许调节细胞内的蛋白质。
大分子穿过核膜的运输。此外,NPC还有重要的交通工具,
独立的功能,包括影响核膜动力学和完整性,有助于
染色体组织和调节基因表达。NPC结构和功能的许多特点,
在整个真核生物中保守;然而,NPC的数量,分布,组成和功能可以改变
在发育过程中以及对环境信号的反应中发生显著变化。此外,NPC密度增加
已经在包括癌症在内的人类疾病中观察到。在许多生物体中的工作已经确定了
保守的跨膜核孔蛋白Ndc 1是NPC组装和插入到细胞膜中所需的关键因子。
核膜然而,NPC插入发生的确切机制仍不清楚。此外,本发明的目的是,
试图剖析Ndc 1和其他假定的插入因子在酵母NPC中的作用是复杂的
通过它们在酵母纺锤体极体插入中的双重功能。为了解决这些问题,我们
开发了创新的遗传和成像方法来表征与裂变酵母相互作用的蛋白质
Ndc 1直系同源物,Cut 11。使用高通量膜酵母双杂交筛选,我们确定了新的Cut 11
在脊椎动物中保守的参与脂质代谢和膜组织的相互作用蛋白质
并确定了这些相互作用是如何被Cut 11突变所调节的。我们还开发了3D
结构化照明显微镜和图像分析工具,使我们能够可视化和量化的NPC在体内。
重要的是,这种方法允许确定NPC组成,同时保持单个NPC分辨率,并且
揭示了一个区域与异质NPC组成的纺锤体极体附近。我们会利用这个
强大的成像平台,以确定新发现的Cut 11相互作用蛋白是否定位于NPC
并且具有NPC组装和插入的功能。我们还将研究分子机制,
调节保守的核膜蛋白Tts 1在NPC中的定位,阐明其在NPC中的作用
组装和分配。最后,我们将确定在纺锤体附近区域的NPC的组成
并确定如何建立和维护这个专门的NPC库。这些研究将扩大我们的
了解NPC组装是如何调节的,并将提供有价值的洞察新的蛋白质,
在从酵母到哺乳动物的NPC组装中具有潜在的保守功能。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Joseph M Varberg其他文献
Joseph M Varberg的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Joseph M Varberg', 18)}}的其他基金
Defining the mechanisms of nuclear pore complex assembly in fission yeast
定义裂殖酵母核孔复合体组装的机制
- 批准号:
10399165 - 财政年份:2020
- 资助金额:
$ 6.53万 - 项目类别:
Defining the mechanisms of nuclear pore complex assembly in fission yeast
定义裂殖酵母核孔复合体组装的机制
- 批准号:
10397821 - 财政年份:2020
- 资助金额:
$ 6.53万 - 项目类别:
相似海外基金
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
- 批准号:
2334970 - 财政年份:2024
- 资助金额:
$ 6.53万 - 项目类别:
Standard Grant
NSF-BSF: Towards a Molecular Understanding of Dynamic Active Sites in Advanced Alkaline Water Oxidation Catalysts
NSF-BSF:高级碱性水氧化催化剂动态活性位点的分子理解
- 批准号:
2400195 - 财政年份:2024
- 资助金额:
$ 6.53万 - 项目类别:
Standard Grant
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
- 批准号:
2334969 - 财政年份:2024
- 资助金额:
$ 6.53万 - 项目类别:
Standard Grant
Mechanochemical synthesis of nanocarbon and design of active sites for oxygen reducton/evolution reactions
纳米碳的机械化学合成和氧还原/演化反应活性位点的设计
- 批准号:
23K04919 - 财政年份:2023
- 资助金额:
$ 6.53万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Creation of porous inorganic frameworks with controlled structure of metal active sites by the building block method.
通过积木法创建具有金属活性位点受控结构的多孔无机框架。
- 批准号:
22KJ2957 - 财政年份:2023
- 资助金额:
$ 6.53万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Catalysis of Juxaposed Active Sites Created in Nanospaces and Their Applications
纳米空间中并置活性位点的催化及其应用
- 批准号:
23K04494 - 财政年份:2023
- 资助金额:
$ 6.53万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Generation of carbon active sites by modifying the oxygen containing functional groups and structures of carbons for utilizing to various catalytic reactions.
通过修饰碳的含氧官能团和结构来产生碳活性位点,用于各种催化反应。
- 批准号:
23K13831 - 财政年份:2023
- 资助金额:
$ 6.53万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
CAREER: CAS: Understanding the Chemistry of Palladium and Silyl Compounds to Design Catalyst Active Sites
职业:CAS:了解钯和甲硅烷基化合物的化学性质以设计催化剂活性位点
- 批准号:
2238379 - 财政年份:2023
- 资助金额:
$ 6.53万 - 项目类别:
Continuing Grant
CAS: Collaborative Research: Tailoring the Distribution of Transient vs. Dynamic Active Sites in Solid-Acid Catalysts and Their Impacts on Chemical Conversions
CAS:合作研究:定制固体酸催化剂中瞬时活性位点与动态活性位点的分布及其对化学转化的影响
- 批准号:
2154399 - 财政年份:2022
- 资助金额:
$ 6.53万 - 项目类别:
Standard Grant
Engineering of Active Sites in Heterogeneous Catalysts for Sustainable Chemical and Fuel Production.
用于可持续化学和燃料生产的多相催化剂活性位点工程。
- 批准号:
RGPIN-2019-06633 - 财政年份:2022
- 资助金额:
$ 6.53万 - 项目类别:
Discovery Grants Program - Individual