Improving gene expression via Massively Parallel Synonymous Codon Variant Screening
通过大规模并行同义密码子变体筛选提高基因表达
基本信息
- 批准号:9908223
- 负责人:
- 金额:$ 29.86万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-03-01 至 2022-02-28
- 项目状态:已结题
- 来源:
- 关键词:Algorithm DesignAlgorithmsAliquotAntibodiesBiotechnologyBlood Coagulation FactorCellsCodeCodon NucleotidesComplementary DNAConsumptionDNADNA LibraryDataDependovirusDideoxy Chain Termination DNA SequencingEnzyme-Linked Immunosorbent AssayFactor IXGene ExpressionGene Transduction AgentGenesGenetic TranscriptionGoalsHarvestHeavy-Chain ImmunoglobulinsHumanIn VitroIndividualLibrariesLiteratureLiverMeasuresMessenger RNAMethodsMotivationMusNicotianaOrganismOutcomePhasePlanetsPlant ExtractsPlant GenesPlant LeavesPlantsPlayProductionProteinsRNARecombinant ProteinsRecombinantsResearch PersonnelRhizobium radiobacterRibosomal RNARoleSmall RNASystemTechnologyTestingTherapeuticTimeTissuesTobaccoTranscriptVaccinesVariantWorkYeastsbasecDNA Librarycommercializationdesignexperimental studyexpression vectorgene therapygenetic variantimprovedin vivoinnovationnext generation sequencingparticleprotein expressionscreeningsingle molecule real time sequencingtherapeutic proteintherapy designvector
项目摘要
Our overall goal is to reduce to practice an innovative new method for empirically identifying the optimal
codon usage for any gene where the intent is to maximize protein accumulation, in either heterologous or
homologous expression systems. In this Phase I project we explain how this method will work and demonstrate
its usefulness by identifying highly expressing codon variants of a human Factor IX gene in both plant and
mammalian expression systems. Our method is based on the observation that there is a high degree of correlation
between accumulation of mRNA and protein in our plant transient expression system and there is literature
support for such a correlation in mammalian and yeast systems as well. We recently found that when four
divergent synonymous codon variants of one immunoglobulin heavy chain were expressed together in the same
plant, the relative abundance of the four mRNAs was a close match for their relative abundance when expressed
separately. From this we conceived of a new method that we call Massively Parallel Synonymous Codon Variant
Screening (MPSCVS), which should allow the comparison of a very large number of different gene variants in a
single experiment.
Demonstration of our system will begin with a library of approximately 59,000 synonymous codon variants
of Factor IX in an adeno-associated virus (AAV) gene therapy vector. We will use the AAV library to transduce
the livers of mice in vivo. RNA will be isolated from the mouse livers. We will subclone an aliquot of the library into
a plant expression vector and use that to transform Agrobacterium tumefaciens, which is used for plant (Nicotiana
benthamiana) transformation. We will express the library transiently in tobacco leaves, harvest leaf tissue and
isolate total RNA. The mRNA from both plants and human cells will be used to produce double stranded cDNA,
which will be “counted” by next generation sequencing to identify the most abundant mRNAs in both systems.
Clones of high-expressing codon variants will be tested for protein and RNA expression individually in the
appropriate expression system. We will then analyze the degree of correlation between RNA and protein
expression and determine the overall efficiency of MPSCVS in identifying the best expressing variants.
我们的总体目标是减少实践一种创新的新方法,以经验确定最优
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KEITH WYCOFF其他文献
KEITH WYCOFF的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KEITH WYCOFF', 18)}}的其他基金
Factor H Fc fusions as novel therapeutics for Burkholderia pseudomallei infections
H 因子 Fc 融合作为鼻疽伯克霍尔德杆菌感染的新疗法
- 批准号:
10766626 - 财政年份:2023
- 资助金额:
$ 29.86万 - 项目类别:
FH-Fc as a Pre-Exposure Prophylactic for Tickborne Disease
FH-Fc 作为蜱传疾病的暴露前预防剂
- 批准号:
10219129 - 财政年份:2020
- 资助金额:
$ 29.86万 - 项目类别:
FH-Fc as a Pre-Exposure Prophylactic for Tickborne Disease
FH-Fc 作为蜱传疾病的暴露前预防剂
- 批准号:
10082224 - 财政年份:2020
- 资助金额:
$ 29.86万 - 项目类别:
A mucosally targeted MERS-CoV vaccine produced in plants
在植物中生产的粘膜靶向 MERS-CoV 疫苗
- 批准号:
9141182 - 财政年份:2017
- 资助金额:
$ 29.86万 - 项目类别:
Exploiting Superinfection Exclusion To Express Polyclonal Antibodies In Plants
利用重复感染排除在植物中表达多克隆抗体
- 批准号:
8781667 - 财政年份:2014
- 资助金额:
$ 29.86万 - 项目类别:
Targeted mutagenesis of plant genes by the CRISPR/Cas system
CRISPR/Cas系统对植物基因进行定点突变
- 批准号:
8713873 - 财政年份:2014
- 资助金额:
$ 29.86万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 29.86万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 29.86万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 29.86万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 29.86万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 29.86万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 29.86万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 29.86万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 29.86万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 29.86万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 29.86万 - 项目类别:
Continuing Grant














{{item.name}}会员




