Computational Prediction of Genetic Drivers of Breast Cancer Metastases
乳腺癌转移遗传驱动因素的计算预测
基本信息
- 批准号:9910689
- 负责人:
- 金额:$ 6.28万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-02-27 至 2020-12-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAdvanced Malignant NeoplasmBasic Cancer ResearchBehavioralBiologicalBiological ModelsBreast Cancer ModelBreast Cancer PreventionBreast cancer metastasisCancer BiologyCancer EtiologyCancer InterventionCause of DeathCell Culture TechniquesCell ProliferationCellsCessation of lifeClinicalCollaborationsComputational TechniqueComputing MethodologiesDataDatabasesDevelopmentDisseminated Malignant NeoplasmEnvironmentFDA approvedFellowshipFoundationsFundingFutureGene ExpressionGenesGeneticGenetic ModelsGenetic TranscriptionGenetically Engineered MouseGenomicsGoalsHome environmentHumanIndividualInfrastructureInstitutionInstitutional Review BoardsInvadedJointsKnowledgeLeadMalignant NeoplasmsMammary glandMathematicsMeasurementMentorsMentorshipMetastatic breast cancerMethodsMissionModelingMolecularMorbidity - disease rateNational Cancer InstituteNeoplasm MetastasisNonmetastaticOncologyOrganoidsPathway AnalysisPathway interactionsPatientsPharmaceutical PreparationsPhenotypePhosphotransferasesPhysicsPopulation GeneticsPrimary NeoplasmProtein DatabasesProtein KinaseProteinsRegulator GenesResearchResearch PersonnelResearch TrainingResourcesSamplingScientistSignal TransductionSpecimenStudy SubjectSystemTherapeuticTherapeutic InterventionTherapeutic UsesTissuesTrainingTumor Cell InvasionUnited StatesValidationWomananticancer researchbasecancer therapycollaborative environmentcurriculum developmentgenetic regulatory proteingenomic datahuman subjectimprovedinnovationmalignant breast neoplasmmathematical methodsmortalitymouse geneticsneoplastic cellnetwork modelsnovelnovel therapeuticsperturbation theoryphysical sciencepreventprogramsresearch and developmenttargeted treatmenttranscription factortranscriptome sequencingtumortumor growthundergraduate student
项目摘要
Project Summary
While metastasis is the main cause of cancer mortality, many of its molecular requirements remain unknown.
Computational methods that trace the biological networks from upstream metastasis drivers to downstream
effectors have the potential to identify new points of intervention for cancer therapies. Developing these types of
methods requires individuals with expertise in statistical network models and deep engagement with cancer
experimental systems. This fellowship will train the PI to predict the flow of both transcriptional and signaling
information through biological networks, connecting these changes to phenotypic and behavioral consequences
for cells and tissue derived from metastatic and non-metastatic breast cancer organoids. The Bader
(computational) and Ewald (experimental) labs are jointly funded by the National Cancer Institute as a Cancer
Target Discovery and Development (CTD2) Center focused on breast cancer metastasis. This center provides
a uniquely powerful environment of mentorship, resources, and infrastructure that will enable the PI to use his
formal training in statistical physics as the foundation for developing and applying new methods for computational
oncology. Research will exploit three-dimensional organotypic cell culture and experimental methods motivated
by population genetics to identify metastasis driver and effector genes in genetically engineered mouse models
and in primary tumor specimens from an ongoing IRB-approved human subjects study. Genes identified by RNA-
Seq will be analyzed with novel network perturbation theory to connect upstream drivers to downstream
effectors. These inferred networks will in turn be connected to phenotypic and behavioral consequences for
mammary organoids and tissues. Although outside the scope of this proposal, the JHU CTD2 Center has the
mission and resources to validate findings with clinical potential for preventing or treating metastatic breast
cancer, and potentially other invasive or metastatic cancers with similar molecular mechanisms. The PI’s
background in biological and statistical physics, including computational methods, enables the mathematical and
computational aspects of the proposed research. The fellowship will provide essential training that will permit
the PI to lead independent research that combines physical sciences methods with experimental innovations
and data-rich -omics measurements for cancer basic research and to aid therapeutic advances. The PI will have
robust opportunities to collaborate with Hopkins and other institutions in future and will be an effective mentor
for training computational oncology researchers in his own lab.
项目摘要
虽然转移是癌症死亡的主要原因,但它的许多分子要求仍然未知。
追踪从上游转移驱动因素到下游的生物网络的计算方法
效应器有可能为癌症治疗确定新的干预点。开发这些类型的
方法需要具备统计网络模型专业知识并深入研究癌症的人员
实验系统。这一奖学金将训练PI预测转录和信号的流动
通过生物网络,将这些变化与表型和行为后果联系起来
适用于来自转移性和非转移性乳腺癌有机化合物的细胞和组织。蝙蝠侠
(计算)和Ewald(实验)实验室由国家癌症研究所作为癌症联合资助
靶点发现和开发中心(CTD2)专注于乳腺癌转移。这个中心提供
一个独特的强大的导师、资源和基础设施环境,使PI能够使用HIS
正规的统计物理培训是开发和应用新的计算方法的基础
肿瘤学。研究将开发三维器官型细胞培养和实验方法
用群体遗传学确定基因工程小鼠模型中的转移驱动基因和效应基因
以及来自IRB批准的正在进行的人类受试者研究的原发肿瘤样本。由RNA鉴定的基因-
SEQ将使用新的网络扰动理论进行分析,以连接上游驱动程序和下游驱动程序
效应器。这些推断的网络将反过来连接到表型和行为后果
乳腺器官和组织。虽然超出了本提案的范围,但JHU CTD2中心拥有
使命和资源,以验证具有预防或治疗转移性乳癌临床潜力的研究结果
癌症,以及可能具有类似分子机制的其他浸润性或转移性癌症。少年派的
生物和统计物理学的背景,包括计算方法,使数学和
拟议研究的计算方面。该奖学金将提供必要的培训,使
PI将领导将物理科学方法与实验创新相结合的独立研究
以及用于癌症基础研究和帮助治疗进展的数据丰富的组学测量。私家侦探将拥有
未来与霍普金斯大学和其他机构合作的良好机会,并将成为有效的导师
在自己的实验室里培训计算肿瘤学研究人员。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael G. Lerner其他文献
Improved Sampling in Molecular Dynamic Studies of Z[WC]-DNA and the B to Z-DNA Transition
- DOI:
10.1016/j.bpj.2017.11.527 - 发表时间:
2018-02-02 - 期刊:
- 影响因子:
- 作者:
Sirajus Salekin;Micaela Bush;Alma Gracic;Ahmed Imamovic;Ahsan A. Khoja;Jinhee Kim;Lam T. Nguyen;Sunil Pun;Ashutosh Rai;Sirajus Salekin;Alexander K. Seewald;Benjamin L. Yee;Michael G. Lerner - 通讯作者:
Michael G. Lerner
Membrane Diffusion of Tethered DPPC and Tethered PIP3-Bound Protein Systems
- DOI:
10.1016/j.bpj.2009.12.2076 - 发表时间:
2010-01-01 - 期刊:
- 影响因子:
- 作者:
Michael G. Lerner;Richard W. Pastor - 通讯作者:
Richard W. Pastor
Correlated Motions in Several Variants of the DHFR-NADPH Complex
- DOI:
10.1016/j.bpj.2017.11.1302 - 发表时间:
2018-02-02 - 期刊:
- 影响因子:
- 作者:
Annika Hirmke;Malvika Dua;Craig J. Early;Paul F. Maxson;Muhammad Mujtaba;Moataz Noureddine;Arish Mudra Rakshasa;Heather A. Carlson;Michael G. Lerner - 通讯作者:
Michael G. Lerner
Membrane Diffusion of Tethered Dimer and Trimer Systems
- DOI:
10.1016/j.bpj.2010.12.2935 - 发表时间:
2011-02-02 - 期刊:
- 影响因子:
- 作者:
Michael G. Lerner;Richard W. Pastor - 通讯作者:
Richard W. Pastor
Boris Vian's “L'Arrache-Coeur”: Some comments on his style
- DOI:
10.1007/bf01513605 - 发表时间:
1974-04-01 - 期刊:
- 影响因子:0.300
- 作者:
Michael G. Lerner - 通讯作者:
Michael G. Lerner
Michael G. Lerner的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}