Automated detection and prediction of atrial fibrillation during sepsis
脓毒症期间心房颤动的自动检测和预测
基本信息
- 批准号:9910440
- 负责人:
- 金额:$ 53.56万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-04-01 至 2022-03-31
- 项目状态:已结题
- 来源:
- 关键词:AffectAlgorithmic AnalysisAlgorithmsAmericanAntibioticsArrhythmiaAtrial FibrillationBig DataCardiacCardiac Surgery proceduresCardiovascular systemCessation of lifeCharacteristicsClinicalClinical ResearchClinical TreatmentComplicationComputer AssistedCritical IllnessDataDatabasesDetectionDevelopmentEarly DiagnosisElectrolytesElectromagneticsElectronic Health RecordEvidence based treatmentFunctional disorderFutureGoldGrantHeart AbnormalitiesHeart AtriumHeart RateHeart failureHospitalizationHospitalsHourInfectionIntelligenceIntensive CareInterventionInvestigationKnowledgeLaboratoriesLifeLinkLiquid substanceManualsMethodsModelingMonitorMorbidity - disease rateMorphologic artifactsMotionMyocardial dysfunctionNoiseOrganOutcomePatient-Focused OutcomesPatientsPhysiologic pulsePreventionPreventive therapyQuality of lifeResearchResourcesResuscitationRiskRisk FactorsSepsisShockStrokeStroke VolumeSubgroupTechnologyTelemetryTimeUnited StatesUnited States National Institutes of HealthVariantautomated algorithmbaseclinical databaseclinical predictorscomorbiditydata warehouseelectronic dataheart rhythmhemodynamicshigh riskimprovedimproved outcomeinnovationmachine learning methodmortalitynovelportabilitypredictive modelingpredictive signaturepreventresponseseptic patientsstroke risktherapeutic targettime usetooltreatment strategy
项目摘要
7. ABSTRACT / PROJECT SUMMARY
We propose the “Automated detection and prediction of atrial fibrillation during sepsis” study to develop
automated technologies capable of accurate atrial fibrillation (AF) detection and prediction during sepsis.
Sepsis is a life-threatening, dysregulated response to infection and the most common illness leading to
hospitalization in the United States, affecting ~1 million Americans yearly, and is associated with 50% of all
hospital deaths. With the exception early antibiotic and fluid use, few therapies improve outcomes among
septic patients; new treatment strategies are greatly needed to improve survival. New-onset AF is a common
dysrhythmia among critically ill patients with sepsis, affecting up to 1 in 3 septic patients and conferring
increased short- and long-term risks stroke, heart failure, and death. Prevention of AF or its complications may
improve sepsis outcomes by reducing AF-related morbidity and mortality. Although several evidence-based
treatments have shown efficacy in treating and preventing AF in certain high-risk subgroups (e.g., AF
prevention following cardiac surgery), studying application of these therapies among critically ill patients with
sepsis has been hampered by two major factors: 1) we lack validated automated mechanisms to detect AF and
facilitate real-world AF research in large clinical databases, and 2) we cannot presently predict which patients
with sepsis will develop AF. Our project will leverage the unique resources of the recently released
Multiparameter Intelligent Monitoring in Intensive Care (MIMIC III) database. MIMIC III links continuous ECG
and pulse plethysmographic waveforms to a wealth of time-varying clinical and hemodynamic data. Our project
will develop and validate state-of-the art automated AF detection algorithms using waveform data from critically
ill patients. Automated AF detection would enable expedited clinical treatment of AF, identification of subclinical
AF, and will catalyze the study of AF in emerging electronic health record waveform databases. We will
develop innovative automated AF prediction capabilities using state-of-the-art waveform analysis algorithms
and machine learning methods in critically ill patients. Automated algorithms that identify patients at high risk
for developing AF in the near-term would enable targeting of preventative therapies and potentially usher in a
new era of AF prevention for critically ill patients. AF prevention and treatment facilitated through our project
will allow targeting of novel, AF-based mechanisms of poor outcomes during and following sepsis.
7.摘要/项目总结
我们提出了“脓毒症期间房颤的自动检测和预测”研究,
自动化技术能够在脓毒症期间准确检测和预测房颤(AF)。
脓毒症是一种危及生命的,对感染的失调反应,是导致感染的最常见疾病。
在美国,每年影响约100万美国人,并且与50%的
医院死亡除了早期使用抗生素和液体外,很少有治疗能改善患者的预后。
脓毒症患者;非常需要新的治疗策略来提高生存率。新发房颤是常见的
败血症重症患者中的心律失常,影响多达1/3的败血症患者,
增加中风、心力衰竭和死亡的短期和长期风险。预防房颤或其并发症可能
通过降低AF相关发病率和死亡率改善脓毒症结局。尽管一些基于证据的
治疗在某些高风险亚组(例如,AF
心脏手术后的预防),研究这些疗法在重症患者中的应用
脓毒症受到两个主要因素的阻碍:1)我们缺乏有效的自动机制来检测AF,
促进大型临床数据库中的真实世界AF研究,2)我们目前无法预测哪些患者
脓毒症将发展AF。我们的项目将利用最近发布的
重症监护多参数智能监测(MIMIC III)数据库。MIMIC III链接连续ECG
和脉搏体积描记波形与大量随时间变化的临床和血液动力学数据相关联。我们的项目
将开发和验证最先进的自动AF检测算法使用波形数据从关键
生病的病人自动化AF检测将加快AF的临床治疗,识别亚临床
AF,并将在新兴的电子健康记录波形数据库中促进AF的研究。我们将
使用最先进的波形分析算法开发创新的自动AF预测功能
和机器学习方法在重症患者中的应用。自动算法识别高风险患者
在短期内发展房颤将使预防性治疗的目标,并可能迎来一个新的
重症患者房颤预防的新时代。通过我们的项目促进AF预防和治疗
将允许靶向脓毒症期间和之后的不良结局的新的基于AF的机制。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Atrial Fibrillation Prediction from Critically Ill Sepsis Patients.
- DOI:10.3390/bios11080269
- 发表时间:2021-08-09
- 期刊:
- 影响因子:0
- 作者:Bashar SK;Ding EY;Walkey AJ;McManus DD;Chon KH
- 通讯作者:Chon KH
Hospital Variation in Gastrostomy Tube Use among the Critically Ill.
医院危重病人胃造口管使用情况的差异。
- DOI:10.1513/annalsats.201903-250rl
- 发表时间:2019
- 期刊:
- 影响因子:8.3
- 作者:Law,AnicaC;Stevens,JenniferP;Walkey,AllanJ
- 通讯作者:Walkey,AllanJ
Noise Detection in Electrocardiogram Signals for Intensive Care Unit Patients.
- DOI:10.1109/access.2019.2926199
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Bashar SK;Ding E;Walkey AJ;McManus DD;Chon KH
- 通讯作者:Chon KH
Novel Density Poincaré Plot Based Machine Learning Method to Detect Atrial Fibrillation From Premature Atrial/Ventricular Contractions.
新型密度基于庞加莱的机器学习方法,可从早产心房/心室收缩检测房颤。
- DOI:10.1109/tbme.2020.3004310
- 发表时间:2021-03
- 期刊:
- 影响因子:0
- 作者:Bashar SK;Han D;Zieneddin F;Ding E;Fitzgibbons TP;Walkey AJ;McManus DD;Javidi B;Chon KH
- 通讯作者:Chon KH
An Accurate QRS complex and P wave Detection in ECG Signals using Complete Ensemble Empirical Mode Decomposition Approach.
- DOI:10.1109/access.2019.2939943
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Hossain B;Bashar SK;Walkey AJ;McManus DD;Chon KH
- 通讯作者:Chon KH
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Allan J. Walkey其他文献
Guideline : Mechanical Ventilation in Adult Patients with Acute Respiratory Distress Syndrome
指南:成人急性呼吸窘迫综合征患者的机械通气
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
E. Fan;L. Sorbo;E. Goligher;C. Hodgson;L. Munshi;Allan J. Walkey;N. Adhikari;M. Amato;R. Branson;R. Brower;N. Ferguson;O. Gajic;L. Gattinoni;D. Hess;J. Mancebo;M. Meade;D. McAuley;A. Pesenti;V. Ranieri;G. Rubenfeld;E. Rubin;Maureen A. Seckel;Arthur S Slutsky;D. Talmor;B. Thompson;H. Wunsch;E. Uleryk;J. Brożek;L. Brochard - 通讯作者:
L. Brochard
Sarcoidosis Treatment Patterns in the United States: 2016-2022
美国结节病治疗模式:2016-2022 年
- DOI:
10.1016/j.chest.2024.10.040 - 发表时间:
2025-04-01 - 期刊:
- 影响因子:8.600
- 作者:
Ruchika Sangani;Nicholas A. Bosch;Praveen Govender;Brittany Scarpato;Allan J. Walkey;Julia Newman;Anica C. Law;Kari R. Gillmeyer;Divya A. Shankar - 通讯作者:
Divya A. Shankar
Formulating the Research Question
制定研究问题
- DOI:
10.1007/978-3-319-43742-2_9 - 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
A. Mehta;B. Malley;Allan J. Walkey - 通讯作者:
Allan J. Walkey
Differential response to intravenous prostacyclin analog therapy in patients with pulmonary arterial hypertension
- DOI:
10.1016/j.pupt.2011.01.002 - 发表时间:
2011-08-01 - 期刊:
- 影响因子:
- 作者:
Allan J. Walkey;Daniel Fein;Kevin J. Horbowicz;Harrison W. Farber - 通讯作者:
Harrison W. Farber
Modeling the effects of stretch-dependent surfactant secretion on lung recruitment during variable ventilation
模拟可变通气期间拉伸依赖性表面活性剂分泌对肺复张的影响
- DOI:
10.4236/jbise.2013.612a008 - 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
S. Amin;A. Majumdar;Philip E Alkana;Allan J. Walkey;G. O'Connor;B. Suki - 通讯作者:
B. Suki
Allan J. Walkey的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Allan J. Walkey', 18)}}的其他基金
Informing best practices for evaluation and treatment of myocardial injury during sepsis
为脓毒症期间心肌损伤的评估和治疗提供最佳实践
- 批准号:
10973324 - 财政年份:2023
- 资助金额:
$ 53.56万 - 项目类别:
Targeting cardiovascular events to improve patient outcomes after sepsis
针对心血管事件以改善脓毒症后患者的预后
- 批准号:
9923730 - 财政年份:2018
- 资助金额:
$ 53.56万 - 项目类别:
Targeting cardiovascular events to improve patient outcomes after sepsis
针对心血管事件以改善脓毒症后患者的预后
- 批准号:
10219343 - 财政年份:2018
- 资助金额:
$ 53.56万 - 项目类别:
Automated detection and prediction of atrial fibrillation during sepsis
脓毒症期间心房颤动的自动检测和预测
- 批准号:
9283910 - 财政年份:2017
- 资助金额:
$ 53.56万 - 项目类别:
Atrial Fibrillation in Sepsis: Patient Outcomes and Provider Practice Patterns
脓毒症中的心房颤动:患者结果和提供者实践模式
- 批准号:
9002852 - 财政年份:2013
- 资助金额:
$ 53.56万 - 项目类别:
Atrial Fibrillation in Sepsis: Patient Outcomes and Provider Practice Patterns
脓毒症中的心房颤动:患者结果和提供者实践模式
- 批准号:
8617298 - 财政年份:2013
- 资助金额:
$ 53.56万 - 项目类别:
Atrial Fibrillation in Sepsis: Patient Outcomes and Provider Practice Patterns
脓毒症中的心房颤动:患者结果和提供者实践模式
- 批准号:
8425628 - 财政年份:2013
- 资助金额:
$ 53.56万 - 项目类别:
Atrial Fibrillation in Sepsis: Patient Outcomes and Provider Practice Patterns
脓毒症中的心房颤动:患者结果和提供者实践模式
- 批准号:
8791133 - 财政年份:2013
- 资助金额:
$ 53.56万 - 项目类别:
Atrial Fibrillation in Sepsis: Patient Outcomes and Provider Practice Patterns
脓毒症中的心房颤动:患者结果和提供者实践模式
- 批准号:
9205255 - 财政年份:2013
- 资助金额:
$ 53.56万 - 项目类别:
相似海外基金
AI-based prediction of the belepharoptosis etiologies by means of machine learning algorithmic analysis of length-tensile force chart of levator muscle
通过提上睑肌长度-拉力图的机器学习算法分析,基于人工智能的上睑下垂病因预测
- 批准号:
22K09863 - 财政年份:2022
- 资助金额:
$ 53.56万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Algorithmic analysis of symmetric-key cryptographic primitives
对称密钥密码原语的算法分析
- 批准号:
262074-2008 - 财政年份:2013
- 资助金额:
$ 53.56万 - 项目类别:
Discovery Grants Program - Individual
Algorithmic analysis of symmetric-key cryptographic primitives
对称密钥密码原语的算法分析
- 批准号:
262074-2008 - 财政年份:2012
- 资助金额:
$ 53.56万 - 项目类别:
Discovery Grants Program - Individual
Algorithmic analysis of symmetric-key cryptographic primitives
对称密钥密码原语的算法分析
- 批准号:
262074-2008 - 财政年份:2011
- 资助金额:
$ 53.56万 - 项目类别:
Discovery Grants Program - Individual
Unified Approach for Nanotechnology CAD/Computation by Algorithmic Analysis of Periodic Crystal Structures
通过周期性晶体结构的算法分析实现纳米技术 CAD/计算的统一方法
- 批准号:
22650002 - 财政年份:2010
- 资助金额:
$ 53.56万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Algorithmic analysis of symmetric-key cryptographic primitives
对称密钥密码原语的算法分析
- 批准号:
262074-2008 - 财政年份:2010
- 资助金额:
$ 53.56万 - 项目类别:
Discovery Grants Program - Individual
Algorithmic analysis of symmetric-key cryptographic primitives
对称密钥密码原语的算法分析
- 批准号:
262074-2008 - 财政年份:2009
- 资助金额:
$ 53.56万 - 项目类别:
Discovery Grants Program - Individual
Algorithmic analysis of symmetric-key cryptographic primitives
对称密钥密码原语的算法分析
- 批准号:
262074-2008 - 财政年份:2008
- 资助金额:
$ 53.56万 - 项目类别:
Discovery Grants Program - Individual
Mathematical & Algorithmic Analysis of Natural and Artificial DNA Sequences
数学
- 批准号:
0218568 - 财政年份:2002
- 资助金额:
$ 53.56万 - 项目类别:
Standard Grant
Algorithmic Analysis and Congestion Control of Connection-Oriented Services in Large Scale Communication Networks.
大规模通信网络中面向连接的服务的算法分析和拥塞控制。
- 批准号:
9404947 - 财政年份:1994
- 资助金额:
$ 53.56万 - 项目类别:
Standard Grant