Capturing Rural Risk Network Structures from Continuous-time Interaction Data (RISC)
从连续时间交互数据 (RISC) 中捕获农村风险网络结构
基本信息
- 批准号:9908121
- 负责人:
- 金额:$ 20.06万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:
- 资助国家:美国
- 起止时间:至
- 项目状态:未结题
- 来源:
- 关键词:AddressAdmission activityAffectAlcohol or Other Drugs useBehavioralCommunicable DiseasesCommunitiesComputer ModelsCountryCoupledDataDiseaseDisease OutbreaksDrug usageDrug userEconomicsEpidemicEpidemiologyExcisionGenderGeographyGoalsHIVHIV InfectionsHIV/HCVHealthHepatitis CHepatitis C TransmissionHepatitis C co-infectionHepatitis C virusHospitalizationIllicit DrugsIndianaIndividualInterventionIowaKnowledgeLawsLife Cycle StagesMeasuresMentorsMethamphetamineMethodologyMissionMissouriModelingMonitorNational Institute of Drug AbuseNebraskaNeedle SharingNeedle-Exchange ProgramsNeedlesOpioidOutcomePatternPharmaceutical PreparationsPharmacotherapyPlayPopulationPopulations at RiskPositioning AttributePrevention strategyProcessPublic HealthPublic PolicyResearchRiskRisk BehaviorsRisk FactorsRuralRural PopulationRural drug addictionSocial MobilitySocial NetworkStrategic PlanningStressStructureSubstance abuse problemSurveysSyringesTimeVulnerable PopulationsWorkaddictioncombatcomorbiditycontextual factorsdrug structureepidemiological modelexperiencehigh risk behaviorhigh risk populationillicit drug useimprovedinfection rateinfection riskinnovationmodels and simulationnetwork modelsnovelphysical conditioningresiliencerural arearural drug userural settingsimulationsocialsubstance abuse treatmenttherapy developmenturban setting
项目摘要
PROJECT ABSTRACT
Rural drug use in the Central Plains is a large and growing public health problem. Recent substance abuse data
show that Nebraska, Iowa, and Missouri are all in the top 10 states for methamphetamine-related hospital
admissions. The high level of substance abuse is coupled with a severe lack of treatment facilities in these rural
areas, as well as restrictive syringe access laws. These conditions (high substance use, few treatment facilities,
and lack of access to clean needles) combine to create a vulnerable population, one particularly at risk for the
spread of infectious diseases, like HIV and hepatitis C virus (HCV). For example, a well-publicized HIV outbreak
in southern Indiana occurred in 2015, revealing widespread rural drug use. Outbreaks like this demonstrate that
even populations with low rates of HIV (for example) may be structurally at risk for an epidemic. Despite the
urgency of the rural drug use problem, relatively little is known about the network and behavioral risk factors of
rural drug users. Most of the data on illicit drugs come from urban settings, even while rural drug use and related
health outcomes have increased over the last few decades. The lessons learned from urban drug users are
unlikely to hold in rural areas, where conditions and experiences can be quite different; for example, rural drug
users tend to have small social circles, limited chances for social or economic mobility, high availability of drugs,
and few drug treatment venues. This project, as part of the larger Rural Drug Addiction Research Center, will fill
in crucial gaps in the knowledge of rural drug use and associated health risks while investigating the potential
efficacy of different interventions. In particular, the social network dynamics and behavioral contexts that
contribute to the risk of HCV and HIV infection will be investigated in three rural areas surrounding communities
in Nebraska, Iowa, and Missouri. Behavioral risks associated with HIV and HCV spread, as well as the structure
of the drug use network, will be measured as important risk factors for disease spread (Aim 1). Using these data,
an empirically-grounded, epidemiological simulation will be developed. The simulation approach makes it
possible to pinpoint the conditions under which an epidemic is possible and describe the possible efficacy of
different interventions in limiting a potential outbreak. Previous network models will be extended by combining
traditional survey data with innovative, continuous-time interaction data, resulting in an epidemiological
framework that measures factors like relationship timing, context, and geography (Aim 2), factors that are known
to affect disease spread but have previously been difficult to quantify. This simulation will then be used to
characterize the risk of HIV/HCV spread in this drug user population (Aim 3). Overall, the project will offer timely,
crucial information about a rural, at-risk population. The broad, long-term objective is to establish an empirically-
validated, epidemiological model with clear public policy applications, such as the monitoring of disease spread
in rural, at-risk populations and the development of interventions to combat addiction related harms.
项目摘要
中原地区农村吸毒是一个巨大且日益严重的公共卫生问题。最近的药物滥用数据
显示内布拉斯加州、爱荷华州和密苏里州都是与甲基苯丙胺有关的医院排名前十的州
招生。药物滥用的严重程度加上这些农村地区严重缺乏治疗设施
这些地区,以及限制性的注射器出入法律。这些条件(物质使用量大,处理设施少,
以及无法获得干净的针头)结合在一起创造了一个脆弱的人口,一个特别容易受到
传播传染病,如艾滋病毒和丙型肝炎病毒(丙型肝炎)。例如,一次广为人知的艾滋病毒爆发
印第安纳州南部发生在2015年,揭示了农村地区广泛使用毒品的情况。像这样的疫情证明了
即使是艾滋病毒感染率较低的人群(例如),在结构上也可能面临流行的风险。尽管
农村吸毒问题的紧迫性,对其网络和行为危险因素知之甚少
农村吸毒者。关于非法药物的大部分数据来自城市环境,即使在农村使用毒品和与之有关的
在过去的几十年里,健康结果有所增加。从城市吸毒者身上学到的教训是
在农村地区不太可能成立,那里的条件和经历可能截然不同;例如,农村毒品
吸毒者往往社交圈小,社会或经济流动的机会有限,药物的可获得性高,
几乎没有戒毒场所。这个项目,作为更大的农村吸毒成瘾研究中心的一部分,将填补
在调查潜在的农村毒品使用和相关健康风险的知识方面存在严重差距
不同干预措施的效果。特别是,社交网络动态和行为环境
将在周边三个农村地区调查丙型肝炎病毒和艾滋病病毒感染的风险
在内布拉斯加州、爱荷华州和密苏里州。与艾滋病毒和丙型肝炎病毒传播相关的行为风险以及结构
将被衡量为疾病传播的重要风险因素(目标1)。使用这些数据,
将开发一个以经验为基础的流行病学模拟。模拟的方法使它
可能查明可能发生流行病的条件,并描述可能的疗效
限制潜在疫情爆发的不同干预措施。以前的网络模型将通过组合来扩展
传统的调查数据与创新的、持续时间的交互数据,导致了流行病学
衡量关系时机、背景和地理位置等因素的框架(目标2),这些因素是已知的
对疾病传播的影响,但以前很难量化。然后将使用此模拟来
描述艾滋病毒/丙型肝炎病毒在这一吸毒人群中传播的风险(目标3)。总体而言,该项目将提供及时、
关于农村高危人群的关键信息。广泛的、长期的目标是建立一个经验性的-
经过验证的流行病学模型,具有明确的公共政策应用,如监测疾病传播
在农村、高危人群和制定干预措施,以打击与成瘾有关的危害。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jeffrey Smith其他文献
Jeffrey Smith的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jeffrey Smith', 18)}}的其他基金
Capturing Rural Risk Network Structures from Continuous-time Interaction Data (RISC)
从连续时间交互数据 (RISC) 中捕获农村风险网络结构
- 批准号:
10117091 - 财政年份:2019
- 资助金额:
$ 20.06万 - 项目类别:














{{item.name}}会员




