Platform for transcriptome-wide RNA modification identification in long reads
长读段中全转录组 RNA 修饰识别平台
基本信息
- 批准号:9912024
- 负责人:
- 金额:$ 3.86万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-01-24 至 2023-01-23
- 项目状态:已结题
- 来源:
- 关键词:AddressAdenosineAffectAlternative SplicingAmino AcidsAtlasesBase SequenceBenchmarkingBiologyBloodBrainBrain DiseasesBreastCell LineCellsCharacteristicsChimeric ProteinsCodon NucleotidesComplementary DNAComputational BiologyComputational algorithmComputer softwareComputing MethodologiesDataData AnalysesData SetDatabasesDetectionDiseaseDisease ProgressionDoctor of PhilosophyEnzymesExonsFunctional disorderGuanosineHumanInosineLabelLearningLengthLinkLiteratureLungLung AdenocarcinomaMalignant NeoplasmsMapsMeasuresMediatingMessenger RNAMethodsModelingModificationMotor NeuronsNeuronsNormal tissue morphologyNucleotidesPatternPermeabilityPoly(A) TailPolyadenylationPolymerasePositioning AttributePropertyProtein IsoformsRNARNA EditingRNA ProcessingRNA SplicingRegulationResearch PersonnelReverse Transcriptase Polymerase Chain ReactionRoleScienceSignal TransductionSiteStructureSystemTechniquesTestingTimeTissuesTrainingTranscriptWorkadenosine deaminasebasecareercomputer frameworkcomputerized toolscostcost effectivefunctional outcomeshuman tissueinsightknock-downmRNA Precursormachine learning methodnanoporeneuron lossskillssoftware developmentsuccesstooltranscriptometranscriptome sequencing
项目摘要
Project Summary
RNA modifications are pervasive throughout the human transcriptome and affect transcript stability,
localization, and function. In particular, ADAR-mediated adenosine-to-inosine (A-to-I) edits in RNA have been
shown to affect pre-mRNA splicing and alter codon sequence. Amino acid changes caused by inosines have
been implicated in various deleterious conditions, which include cancer and diseases of the brain. However,
previous literature mapping inosine positions in high-throughput were only able to do so inside the limited
context provided by short RNA-Seq reads. As modifications can be transcript-specific, elucidating the
association of inosines with full mRNA isoforms is crucial for a more rigorous understanding of the role of
inosine modifications in the tissues of our body and, more broadly, disease. Therefore, I propose to investiate
A-to-I editing in the context of diseased and non-diseased systems using full-length mRNA nanopore
sequencing. The nanopore is able to sequence whole RNA strands by converting changes in electrical current
caused by RNA translocating through the pore into nucleotide sequence. Aim 1 leverages high-accuracy
nanopore cDNA sequencing of cellular systems with and without ADAR knockdown to interrogate ADAR
function and A-to-I-induced changes to transcript expression changes. To accomplish the latter, I will develop
workflows to determine isoform structure from noisy, long reads. In addition to sequencing full-length
transcripts, nanopore native RNA (nvRNA) sequencing informs on RNA modifications, as modified nucleotides
appear as subtle alteration in current signal with respect to canonical nucleotides. As such, Aim 2 employs a
generalizable approach to producing cost-effective training data for systematically understanding how inosines
alter current signals in nanopores. I will use a Cas13b-ADAR fusion protein (REPAIRv2) to create site-specific
edits and then perform nvRNA sequencing on the edited transcriptome. Site-specific A-to-I editing allows this
approach to create a labelled inosine dataset in nvRNA signal from which I can develop computational
algorithms to reliably identify inosines in nvRNA data. The REPAIRv2 approach to can be generalized to
eventually identify any RNA modification with nanopores. Aim 3 will elucidate how A-to-I editing differs
between tissues. I will sequence 4 normal tissue types with nvRNA sequencing, generating a map of A-to-I
edits in conjunction with isoform usage using the software I am developing. Taken together, the fulfillment of
these aims will not only provide further insights on elusive ADAR mechanism, but also create workflows for
nanopore data analysis and a platform for the study of any modification. As I work toward my Ph.D. with this
interdisciplinary project, I will gain invaluable skills in experimental and computational biology that will prepare
me for a career in science.
项目摘要
RNA修饰在整个人类转录组中普遍存在并影响转录物的稳定性,
定位和功能。特别是,RNA中ADAR介导的腺苷到肌苷(A-to-I)编辑已经被发现
显示影响前mRNA剪接并改变密码子序列。由肌苷引起的氨基酸变化
与各种有害的情况有关,包括癌症和脑部疾病。然而,在这方面,
以前的文献在高通量中绘制肌苷位置只能在有限的细胞内这样做,
由短RNA-Seq读数提供的上下文。由于修饰可以是转录本特异性的,因此阐明了转录本的功能。
肌苷与完整的mRNA亚型的关联对于更严格地理解
我们身体组织中的肌苷修饰,更广泛地说,疾病。因此,我提议调查
使用全长mRNA纳米孔在患病和非患病系统的背景下进行A到I编辑
测序纳米孔能够通过转换电流的变化来对整个RNA链进行测序
由RNA通过孔移位到核苷酸序列中引起。 Aim 1利用高精度
有和没有阿达尔敲低的细胞系统的纳米孔cDNA测序以询问阿达尔
功能和A到I诱导的转录物表达变化的变化。为了实现后者,我将开发
工作流程,以从嘈杂的长读段确定同种型结构。除了测序全长
转录物,纳米孔天然RNA(nvRNA)测序告知RNA修饰,作为修饰的核苷酸
表现为电流信号相对于规范核苷酸的细微变化。因此,Aim 2采用了
为系统地了解肌苷
改变纳米孔中的电流信号。我将使用Cas 13 b-ADAR融合蛋白(REPAIRv 2)来创建位点特异性的
编辑,然后对编辑的转录组进行nvRNA测序。特定于站点的A-to-I编辑允许这样做
一种在nvRNA信号中创建标记的肌苷数据集的方法,我可以从中开发计算
算法来可靠地识别nvRNA数据中的肌苷。REPAIRv 2方法可以推广到
最终鉴定任何带有纳米孔的RNA修饰。 目标3将阐明A到I编辑的不同之处
组织之间的联系。我将用nvRNA测序对4种正常组织类型进行测序,
使用我正在开发的软件编辑与异构体的使用。合在一起,
这些目标不仅将为难以捉摸的阿达尔机制提供进一步的见解,而且还将为
纳米孔数据分析和任何修改的研究平台。当我在攻读博士学位的时候。与此
跨学科项目,我将获得宝贵的技能,实验和计算生物学,将准备
给我一份科学工作
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alison Tang其他文献
Alison Tang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alison Tang', 18)}}的其他基金
Platform for transcriptome-wide RNA modification identification in long reads
长读段中全转录组 RNA 修饰识别平台
- 批准号:
10335266 - 财政年份:2020
- 资助金额:
$ 3.86万 - 项目类别:
相似国自然基金
基于ADK/Adenosine调控DNA甲基化探讨“利湿化瘀通络”法对2型糖尿病肾病足细胞裂孔膜损伤的干预机制研究
- 批准号:82074359
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:面上项目
细胞外腺苷(Adenosine)作为干细胞旁分泌因子的生物学鉴定和功能分析
- 批准号:81570244
- 批准年份:2015
- 资助金额:57.0 万元
- 项目类别:面上项目
Adenosine诱导A1/A2AR稳态失衡启动慢性低灌注白质炎性损伤及其机制
- 批准号:81171113
- 批准年份:2011
- 资助金额:55.0 万元
- 项目类别:面上项目
相似海外基金
Targeting the A2B Adenosine Receptor for Immunoprevention of Pancreatic Cancer
靶向 A2B 腺苷受体用于胰腺癌的免疫预防
- 批准号:
10929664 - 财政年份:2023
- 资助金额:
$ 3.86万 - 项目类别:
Exploring the role of adenosine A2A receptors in Schizophrenia using opto-pharmacologically controlled allosteric modulation.
利用光药理学控制的变构调节探索腺苷 A2A 受体在精神分裂症中的作用。
- 批准号:
23K14685 - 财政年份:2023
- 资助金额:
$ 3.86万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The Role of Adenosine Kinase in Mixed Diastolic Heart Failure and Alzheimer Disease
腺苷激酶在混合性舒张性心力衰竭和阿尔茨海默病中的作用
- 批准号:
10679989 - 财政年份:2023
- 资助金额:
$ 3.86万 - 项目类别:
Allostery-driven G protein selectivity in the adenosine A1 receptor
腺苷 A1 受体中变构驱动的 G 蛋白选择性
- 批准号:
BB/W016974/1 - 财政年份:2023
- 资助金额:
$ 3.86万 - 项目类别:
Research Grant
Investigation of new test methods for adenosine-sensitive atrioventricular block
腺苷敏感型房室传导阻滞新检测方法的探讨
- 批准号:
23K07566 - 财政年份:2023
- 资助金额:
$ 3.86万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Probing the role of adenosine pathway in SIV pathogenesis
探讨腺苷途径在 SIV 发病机制中的作用
- 批准号:
10760676 - 财政年份:2023
- 资助金额:
$ 3.86万 - 项目类别:
The role of A1 adenosine receptor signaling in the decline of S. pneumoniae killing by neutrophils in vaccinated aged hosts
A1 腺苷受体信号传导在疫苗接种老年宿主中中性粒细胞杀伤肺炎链球菌下降中的作用
- 批准号:
10605737 - 财政年份:2023
- 资助金额:
$ 3.86万 - 项目类别:
Adenosine triphosphate as a master variable for biomass in the oceanographic context
三磷酸腺苷作为海洋学背景下生物量的主变量
- 批准号:
2319114 - 财政年份:2023
- 资助金额:
$ 3.86万 - 项目类别:
Standard Grant
Late-Stage Functionalisation of Cyclic Guanosine Monophosphate - Adenosine Monophosphate
环单磷酸鸟苷-单磷酸腺苷的后期功能化
- 批准号:
2751533 - 财政年份:2022
- 资助金额:
$ 3.86万 - 项目类别:
Studentship
Postnatal development of adenosine kinase in the brainstem network that controls breathing
控制呼吸的脑干网络中腺苷激酶的出生后发育
- 批准号:
573323-2022 - 财政年份:2022
- 资助金额:
$ 3.86万 - 项目类别:
University Undergraduate Student Research Awards