Statistical Methods for Modeling Polygenic Architecture in Association and Re-sequencing Studies

关联和重测序研究中多基因结构建模的统计方法

基本信息

  • 批准号:
    9912184
  • 负责人:
  • 金额:
    $ 34万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-06-14 至 2022-04-30
  • 项目状态:
    已结题

项目摘要

Project Summary Array- and sequencing-based association studies have identified many loci harboring genetic variants associated with complex traits and common diseases. Altogether, these associated variants only explain a small proportion of heritability, suggesting that most traits and diseases have a polygenic background and are influenced by many variants with small effects. Early attempts to model polygenic complex traits, notably via the linear mixed models (LMMs) and the best linear unbiased predictor (BLUP), have shown promising outcomes for estimating chip heritability, identifying causal variants, and predicting disease risks. However, statistical methods for modeling polygenic architecture remain in their infancy. In particular, existing methods rely on simple effect size assumptions, are not flexible nor adaptive to the underlying genetic architecture of a given trait or disease, and hence cannot take full advantage of the polygenic natural of most traits and diseases. To increase the power of association test and enable more precise phenotype and risk prediction, I propose to develop a suite of novel statistical methods to accurately and flexibly model the polygenic architecture. These new methods will facilitate evaluation and integration of variant functional annotations, multiple phenotype association mapping, and phenotype and risk prediction in association studies. In particular, we will (1) develop methods to evaluate and integrate variant genomic functional annotations to better understand the polygenic architecture of traits and diseases, and enable powerful association mapping; (2) develop strategies for association mapping with multiple correlated phenotypes to identify pleiotropic associations by taking advantage of the shared polygenic background among phenotypes; and (3) develop methods to flexibly model polygenic architecture and use all variants jointly to achieve accurate phenotype and risk prediction. We will develop efficient algorithms to accompany these methods and implement them in free open-source software. We will perform rigorous simulations and comparisons to evaluate our methods. Finally, we will perform in- depth analysis on several large-scale real data sets, including data from the Global Lipids Genetics Consortium, T2D-GENES and METSIM projects, to demonstrate the power of the proposed methods.
项目总结

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xiang Zhou其他文献

Xiang Zhou的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xiang Zhou', 18)}}的其他基金

DMS/NIGMS 2: Advanced Statistical Methods for Spatially Resolved Transcriptomics Studies
DMS/NIGMS 2:空间分辨转录组学研究的高级统计方法
  • 批准号:
    10493427
  • 财政年份:
    2021
  • 资助金额:
    $ 34万
  • 项目类别:
DMS/NIGMS 2: Advanced Statistical Methods for Spatially Resolved Transcriptomics Studies
DMS/NIGMS 2:空间分辨转录组学研究的高级统计方法
  • 批准号:
    10708800
  • 财政年份:
    2021
  • 资助金额:
    $ 34万
  • 项目类别:
DMS/NIGMS 2: Advanced Statistical Methods for Spatially Resolved Transcriptomics Studies
DMS/NIGMS 2:空间分辨转录组学研究的高级统计方法
  • 批准号:
    10797593
  • 财政年份:
    2021
  • 资助金额:
    $ 34万
  • 项目类别:
DMS/NIGMS 2: Advanced Statistical Methods for Spatially Resolved Transcriptomics Studies
DMS/NIGMS 2:空间分辨转录组学研究的高级统计方法
  • 批准号:
    10378298
  • 财政年份:
    2021
  • 资助金额:
    $ 34万
  • 项目类别:
Statistical Methods for Modeling Polygenic Architecture in Association and Re-sequencing Studies
关联和重测序研究中多基因结构建模的统计方法
  • 批准号:
    9505955
  • 财政年份:
    2017
  • 资助金额:
    $ 34万
  • 项目类别:
Statistical Methods for Modeling Polygenic Architecture in Association and Re-sequencing Studies
关联和重测序研究中多基因结构建模的统计方法
  • 批准号:
    10159307
  • 财政年份:
    2017
  • 资助金额:
    $ 34万
  • 项目类别:
New Computational Tools for Advanced Analytics in Genome-wide Association Studies
用于全基因组关联研究高级分析的新计算工具
  • 批准号:
    10582852
  • 财政年份:
    2017
  • 资助金额:
    $ 34万
  • 项目类别:

相似海外基金

CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 34万
  • 项目类别:
    Continuing Grant
Collaborative Research: SHF: Small: Artificial Intelligence of Things (AIoT): Theory, Architecture, and Algorithms
合作研究:SHF:小型:物联网人工智能 (AIoT):理论、架构和算法
  • 批准号:
    2221742
  • 财政年份:
    2022
  • 资助金额:
    $ 34万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: Artificial Intelligence of Things (AIoT): Theory, Architecture, and Algorithms
合作研究:SHF:小型:物联网人工智能 (AIoT):理论、架构和算法
  • 批准号:
    2221741
  • 财政年份:
    2022
  • 资助金额:
    $ 34万
  • 项目类别:
    Standard Grant
Algorithms and Architecture for Super Terabit Flexible Multicarrier Coherent Optical Transmission
超太比特灵活多载波相干光传输的算法和架构
  • 批准号:
    533529-2018
  • 财政年份:
    2020
  • 资助金额:
    $ 34万
  • 项目类别:
    Collaborative Research and Development Grants
OAC Core: Small: Architecture and Network-aware Partitioning Algorithms for Scalable PDE Solvers
OAC 核心:小型:可扩展 PDE 求解器的架构和网络感知分区算法
  • 批准号:
    2008772
  • 财政年份:
    2020
  • 资助金额:
    $ 34万
  • 项目类别:
    Standard Grant
Algorithms and Architecture for Super Terabit Flexible Multicarrier Coherent Optical Transmission
超太比特灵活多载波相干光传输的算法和架构
  • 批准号:
    533529-2018
  • 财政年份:
    2019
  • 资助金额:
    $ 34万
  • 项目类别:
    Collaborative Research and Development Grants
Visualization of FPGA CAD Algorithms and Target Architecture
FPGA CAD 算法和目标架构的可视化
  • 批准号:
    541812-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 34万
  • 项目类别:
    University Undergraduate Student Research Awards
Collaborative Research: ABI Innovation: Algorithms for recovering root architecture from 3D imaging
合作研究:ABI 创新:从 3D 成像恢复根结构的算法
  • 批准号:
    1759836
  • 财政年份:
    2018
  • 资助金额:
    $ 34万
  • 项目类别:
    Standard Grant
Collaborative Research: ABI Innovation: Algorithms for recovering root architecture from 3D imaging
合作研究:ABI 创新:从 3D 成像恢复根结构的算法
  • 批准号:
    1759796
  • 财政年份:
    2018
  • 资助金额:
    $ 34万
  • 项目类别:
    Standard Grant
Collaborative Research: ABI Innovation: Algorithms for recovering root architecture from 3D imaging
合作研究:ABI 创新:从 3D 成像恢复根结构的算法
  • 批准号:
    1759807
  • 财政年份:
    2018
  • 资助金额:
    $ 34万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了