Real Time (RT) In-cell NMR technology to study protein interactions in live cells

实时 (RT) 细胞内 NMR 技术用于研究活细胞中的蛋白质相互作用

基本信息

项目摘要

Real Time (RT) In-cell NMR technology to study protein interactions in live cells Alexander Shekhtman1 1Department of Chemistry, University at Albany, State University of New York, Albany, NY 12222 ABSTRACT: Since intracellular changes induced by stimuli can take hours to fully manifest into detectable signals, one of the overarching goals of modern biology is to understand temporal protein structure-function relationships at atomic resolution within the complexity of a live cell. In-cell solution NMR spectroscopy is an important step towards this goal but is limited by the long data acquisition times and the static nature of in-cell NMR experiments that provide snapshots rather than continuous monitoring of time dependent changes in protein structure. In addition, weak quinary interactions between the protein of interest and intracellular components, particularly RNAs, which are omnipresent in live cells, result in a dramatic increase in the apparent in-cell molecular weight and render all but a few proteins invisible by standard in-cell NMR approaches. There are currently no structural biology tools to characterize time dependent protein interactions in live cells at atomic resolution even though these interactions affect protein physicochemical properties, protein-protein, protein-ligand, and protein-drug binding. We showed that the combination of protein deuteration and NMR experiments using optimized transverse relaxation allowed us to obtain in-cell NMR spectra of previously invisible proteins. The goal of this project is to develop real time (RT) in-cell NMR technology to characterize protein interactions in situ over a long (more than a day) period of time at atomic resolution inside live prokaryotic and eukaryotic cells. We will apply this technology to study how exogenous and endogenous challenges to cells result in specific temporal changes in protein structure. We will build the infrastructure to make this new technology available to the scientific community. We expect that the technology will be critical to bridge the gap between in vitro and in-cell protein biochemistry, which is an absolute requirement to understand cell biology and to develop effective therapeutics against protein targets.
真实的时间(RT)细胞内NMR技术用于研究活细胞中的蛋白质相互作用 亚历山大谢克特曼1 1纽约州立大学奥尔巴尼分校化学系,奥尔巴尼,NY 12222 摘要:由于刺激诱导的细胞内变化可能需要数小时才能完全表现出来, 现代生物学的首要目标之一是了解时间蛋白 在一个活细胞的复杂性内的原子分辨率的结构-功能关系。细胞内解决方案 核磁共振光谱是实现这一目标的重要一步,但受到长数据采集时间的限制 以及提供快照而不是连续的细胞内NMR实验的静态性质 监测蛋白质结构的时间依赖性变化。此外,弱五元相互作用之间 目的蛋白质和细胞内组分,特别是RNA,其在肝脏中无所不在 细胞,导致细胞内表观分子量的急剧增加, 蛋白质不可见的标准细胞内NMR方法。目前还没有结构生物学工具来 以原子分辨率表征活细胞中的时间依赖性蛋白质相互作用, 相互作用影响蛋白质物理化学性质、蛋白质-蛋白质、蛋白质-配体和蛋白质-药物 约束力我们表明,蛋白质氘化和NMR实验的组合,使用优化的 横向弛豫使我们能够获得以前不可见的蛋白质的细胞内NMR谱。目标 该项目的主要目的是开发真实的时间(RT)细胞内NMR技术,以表征蛋白质相互作用, 在活的原核细胞内以原子分辨率长时间(超过一天)原位观察, 真核细胞我们将应用这项技术来研究如何外源性和内源性的挑战, 细胞导致蛋白质结构的特定时间变化。我们将建立基础设施, 科学界可利用的新技术。我们预计这项技术将对 弥合体外和细胞内蛋白质生物化学之间的差距,这是绝对的要求, 了解细胞生物学并开发针对蛋白质靶点的有效疗法。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

ALEXANDER SHEKHTMAN其他文献

ALEXANDER SHEKHTMAN的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('ALEXANDER SHEKHTMAN', 18)}}的其他基金

Project 3: RAGE/DIAPH1 interactions and cellular stress
项目 3:RAGE/DIAPH1 相互作用和细胞应激
  • 批准号:
    10191023
  • 财政年份:
    2019
  • 资助金额:
    $ 30.79万
  • 项目类别:
Project 3: RAGE/DIAPH1 interactions and cellular stress
项目 3:RAGE/DIAPH1 相互作用和细胞应激
  • 批准号:
    10407560
  • 财政年份:
    2019
  • 资助金额:
    $ 30.79万
  • 项目类别:
Project 3: RAGE/DIAPH1 interactions and cellular stress
项目 3:RAGE/DIAPH1 相互作用和细胞应激
  • 批准号:
    10642714
  • 财政年份:
    2019
  • 资助金额:
    $ 30.79万
  • 项目类别:
In-cell NMR technology to study protein interactions
研究蛋白质相互作用的细胞内核磁共振技术
  • 批准号:
    7777153
  • 财政年份:
    2010
  • 资助金额:
    $ 30.79万
  • 项目类别:
In-cell NMR technology to study protein interactions
研究蛋白质相互作用的细胞内核磁共振技术
  • 批准号:
    8102717
  • 财政年份:
    2010
  • 资助金额:
    $ 30.79万
  • 项目类别:
In-cell NMR technology to study protein interactions
研究蛋白质相互作用的细胞内核磁共振技术
  • 批准号:
    8296632
  • 财政年份:
    2010
  • 资助金额:
    $ 30.79万
  • 项目类别:
In-cell NMR technology to study protein interactions
研究蛋白质相互作用的细胞内核磁共振技术
  • 批准号:
    8499358
  • 财政年份:
    2010
  • 资助金额:
    $ 30.79万
  • 项目类别:
ROLE OF SH3 DOMAINS IN NON RECEPTOR PTKS
SH3 结构域在非受体 PTKS 中的作用
  • 批准号:
    6689917
  • 财政年份:
    2002
  • 资助金额:
    $ 30.79万
  • 项目类别:
ROLE OF SH3 DOMAINS IN NON RECEPTOR PTKS
SH3 结构域在非受体 PTKS 中的作用
  • 批准号:
    6522908
  • 财政年份:
    2002
  • 资助金额:
    $ 30.79万
  • 项目类别:
ROLE OF SH3 DOMAINS IN NON RECEPTOR PTKS
SH3 结构域在非受体 PTKS 中的作用
  • 批准号:
    6402527
  • 财政年份:
    2001
  • 资助金额:
    $ 30.79万
  • 项目类别:

相似海外基金

Applications of Deep Learning for Binding Affinity Prediction
深度学习在结合亲和力预测中的应用
  • 批准号:
    2887848
  • 财政年份:
    2023
  • 资助金额:
    $ 30.79万
  • 项目类别:
    Studentship
Metalloenzyme binding affinity prediction with VM2
使用 VM2 预测金属酶结合亲和力
  • 批准号:
    10697593
  • 财政年份:
    2023
  • 资助金额:
    $ 30.79万
  • 项目类别:
Building a binding community - Capacity and capability for affinity and kinetic analysis of molecular interactions.
建立结合社区 - 分子相互作用的亲和力和动力学分析的能力和能力。
  • 批准号:
    MR/X013227/1
  • 财政年份:
    2022
  • 资助金额:
    $ 30.79万
  • 项目类别:
    Research Grant
Using dynamic network models to quantitatively predict changes in binding affinity/specificity that arise from long-range amino acid substitutions
使用动态网络模型定量预测由长程氨基酸取代引起的结合亲和力/特异性的变化
  • 批准号:
    10797940
  • 财政年份:
    2022
  • 资助金额:
    $ 30.79万
  • 项目类别:
Using dynamic network models to quantitatively predict changes in binding affinity/specificity that arise from long-range amino acid substitutions
使用动态网络模型定量预测由长距离氨基酸取代引起的结合亲和力/特异性的变化
  • 批准号:
    10502084
  • 财政年份:
    2022
  • 资助金额:
    $ 30.79万
  • 项目类别:
Using dynamic network models to quantitatively predict changes in binding affinity/specificity that arise from long-range amino acid substitutions
使用动态网络模型定量预测由长距离氨基酸取代引起的结合亲和力/特异性的变化
  • 批准号:
    10707418
  • 财政年份:
    2022
  • 资助金额:
    $ 30.79万
  • 项目类别:
Binding affinity of inositol phosphate analogs to protein toxin TcdB
磷酸肌醇类似物与蛋白质毒素 TcdB 的结合亲和力
  • 批准号:
    573604-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 30.79万
  • 项目类别:
    University Undergraduate Student Research Awards
Computational predictions of thermostability and binding affinity changes in enzymes
酶热稳定性和结合亲和力变化的计算预测
  • 批准号:
    2610945
  • 财政年份:
    2021
  • 资助金额:
    $ 30.79万
  • 项目类别:
    Studentship
I-Corps: Physics-Based Binding Affinity Estimator
I-Corps:基于物理的结合亲和力估计器
  • 批准号:
    2138667
  • 财政年份:
    2021
  • 资助金额:
    $ 30.79万
  • 项目类别:
    Standard Grant
Computational modelling and simulation of antibodies to enhance binding affinity of a potential Burkholderia pseudomallei therapeutic
抗体的计算模型和模拟,以增强潜在的鼻疽伯克霍尔德氏菌治疗剂的结合亲和力
  • 批准号:
    2750554
  • 财政年份:
    2021
  • 资助金额:
    $ 30.79万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了