Developing Quantitative Methods to Reveal Neural Circuit Dynamics
开发定量方法来揭示神经回路动力学
基本信息
- 批准号:9916237
- 负责人:
- 金额:$ 3.89万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-01 至 2020-11-30
- 项目状态:已结题
- 来源:
- 关键词:AlgorithmsAnatomyAnimalsAutomobile DrivingAwardBehaviorBehavioralBiologicalBrainBrain DiseasesCaenorhabditis elegansChemicalsCodeCommunicationDiacetylEnsureEquilibriumFutureGoalsGrainGraphHeadHealthIndividualInformation TheoryInterneuronsLabelLinkMethodsMolecularMotorMovementNamesNegative ValenceNematodaNervous System PhysiologyNervous system structureNeuronsNeurosciencesOdorsOrganismPatternPhasePopulationPositive ValencePreparationProcessPropertyPublicationsResearchResearch Project GrantsRestSignal TransductionStereotypingStimulusStructureSystemTechniquesTestingTimeTransgenic OrganismsWorkbasebehavioral responsecostdesignexperiencegraph theoryinformation modelinformation processinginsightinterestneural circuitneural patterningnoveloptogeneticsrelating to nervous systemsensory feedbacksensory stimulustheoriestooltransmission process
项目摘要
Project Summary/Abstract
Patterns of neural activity underlie information processing in the brain. Most work to date has focused
on separate stages of computation by looking at separate regions in the brain - one at a time. We
propose that techniques from graph theory can help us better understand how information is processed
by entire populations of neurons. To this end, we use the nematode Caenorhabditis elegans to study
the processing of an ecologically-relevant signal in most of the nervous system at once. Specifically,
we will record activity from all of the neurons in the head of the worm, where most olfactory processing
occurs, while we expose the animal to an innately attractive odor, diacetyl. We will then test how this
representation changes in two behavioral states – after adaptation, at which point the worm no longer
finds diacetyl attractive, and when C. elegans recovers from adaptation, when it again finds diacetyl
attractive. We will do all of this in a transgenic worm which will allow us to identify all neurons by name,
and thus to analyze our results based on the known anatomical connections between neurons. Work
we are preparing to submit for publication has established that one graph-theoretic feature can identify
a stimulus’ valence, i.e. whether or not it is attractive or repellent, and we will determine which neurons
are driving changes in this feature. Finally, we will optogenetically test the predictions from our analyses
to ensure that they are biologically significant. For instance, some non-overlapping subsets of neurons
may represent positive and negative valence, and their activation may induce either forward, or
backward, movements, respectively. If, for example, a neuron provides an important link between
neurons that represent any valence (i.e. it is on the shortest path between these neurons) and the motor
command interneurons, then we might reason that it facilitates the transfer of information, and that
inhibiting it would delay the animal’s odor-seeking behavior. A future extension of this work would
combine graph theory and information theory to understand how efficiently neurons process and
transfer information. Importantly, this field, called network coding, proposes that an efficient way to
transmit information is to allow downstream nodes to decode information that is processed along the
path. During my postdoctoral work, as I gain experience with new theories and a new neural system
that uses spiking neurons, I seek to develop the field of network coding for neuroscience. I am
interested in spiking neurons to ensure my work is applicable to the larger field of neural systems which
employ spiking, not graded, potentials.
项目摘要/摘要
神经活动的模式是大脑信息处理的基础。到目前为止,大多数工作都集中在
通过观察大脑中的不同区域--一次一个,对计算的不同阶段进行研究。我们
提出图论中的技术可以帮助我们更好地理解信息是如何处理的
通过整个神经元群体。为此,我们利用线虫秀丽线虫进行研究
在大多数神经系统中同时处理与生态相关的信号。具体来说,
我们将记录蠕虫头部所有神经元的活动,在那里大多数嗅觉处理
当我们将动物暴露在天生诱人的气味双乙酰中时,就会发生这种情况。然后我们将测试这一点
在适应之后,蠕虫不再在两种行为状态下的表示变化
发现双乙酰有吸引力,当线虫从适应中恢复时,当它再次发现双乙酰
很有吸引力。我们将在转基因蠕虫中完成所有这一切,这将使我们能够通过名称识别所有神经元,
从而根据神经元之间已知的解剖学联系来分析我们的结果。工作
我们正在准备提交出版已经确定了一个图论特征可以识别
刺激的价态,即它是吸引的还是排斥的,我们将确定哪些神经元
正在推动这一功能的变化。最后,我们将对我们的分析中的预测进行光遗传学测试
以确保它们具有生物学意义。例如,一些不重叠的神经元子集
可以代表正价和负价,它们的激活可以诱导正向或负价
向后,分别是运动。例如,如果一个神经元提供了一个重要的联系
代表任何价态的神经元(即它位于这些神经元之间的最短路径上)和运动
命令中间神经元,那么我们可能会推断它促进了信息的传递,并且
抑制它会延缓动物寻找气味的行为。这项工作的未来扩展将是
结合图论和信息论来理解神经元处理和
传输信息。重要的是,这个称为网络编码的领域提出了一种有效的方法来
传输信息的目的是允许下游节点解码沿
路径。在我的博士后工作中,随着我对新理论和新神经系统的经验积累
使用尖峰神经元,我试图为神经科学发展网络编码领域。我是
对神经元放电感兴趣,以确保我的工作适用于更大的神经系统领域
使用尖峰,而不是分级的潜力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Javier Josue How其他文献
Javier Josue How的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Javier Josue How', 18)}}的其他基金
Developing Quantitative Methods to Reveal Neural Circuit Dynamics
开发定量方法来揭示神经回路动力学
- 批准号:
10361515 - 财政年份:2021
- 资助金额:
$ 3.89万 - 项目类别:
Developing Quantitative Methods to Reveal Neural Circuit Dynamics
开发定量方法来揭示神经回路动力学
- 批准号:
10326993 - 财政年份:2021
- 资助金额:
$ 3.89万 - 项目类别:
Developing Quantitative Methods to Reveal Neural Circuit Dynamics
开发定量方法来揭示神经回路动力学
- 批准号:
10582556 - 财政年份:2021
- 资助金额:
$ 3.89万 - 项目类别:
Developing Quantitative Methods to Reveal Neural Circuit Dynamics
开发定量方法来揭示神经回路动力学
- 批准号:
10199620 - 财政年份:2020
- 资助金额:
$ 3.89万 - 项目类别:
相似海外基金
Linking Epidermis and Mesophyll Signalling. Anatomy and Impact in Photosynthesis.
连接表皮和叶肉信号传导。
- 批准号:
EP/Z000882/1 - 财政年份:2024
- 资助金额:
$ 3.89万 - 项目类别:
Fellowship
Digging Deeper with AI: Canada-UK-US Partnership for Next-generation Plant Root Anatomy Segmentation
利用人工智能进行更深入的挖掘:加拿大、英国、美国合作开发下一代植物根部解剖分割
- 批准号:
BB/Y513908/1 - 财政年份:2024
- 资助金额:
$ 3.89万 - 项目类别:
Research Grant
Doctoral Dissertation Research: Social and ecological influences on brain anatomy
博士论文研究:社会和生态对大脑解剖学的影响
- 批准号:
2235348 - 财政年份:2023
- 资助金额:
$ 3.89万 - 项目类别:
Standard Grant
Simultaneous development of direct-view and video laryngoscopes based on the anatomy and physiology of the newborn
根据新生儿解剖生理同步开发直视喉镜和视频喉镜
- 批准号:
23K11917 - 财政年份:2023
- 资助金额:
$ 3.89万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Computational comparative anatomy: Translating between species in neuroscience
计算比较解剖学:神经科学中物种之间的翻译
- 批准号:
BB/X013227/1 - 财政年份:2023
- 资助金额:
$ 3.89万 - 项目类别:
Research Grant
computational models and analysis of the retinal anatomy and potentially physiology
视网膜解剖学和潜在生理学的计算模型和分析
- 批准号:
2825967 - 财政年份:2023
- 资助金额:
$ 3.89万 - 项目类别:
Studentship
Genetics of Extreme Phenotypes of OSA and Associated Upper Airway Anatomy
OSA 极端表型的遗传学及相关上呼吸道解剖学
- 批准号:
10555809 - 财政年份:2023
- 资助金额:
$ 3.89万 - 项目类别:
Development of a novel visualization, labeling, communication and tracking engine for human anatomy.
开发一种新颖的人体解剖学可视化、标签、通信和跟踪引擎。
- 批准号:
10761060 - 财政年份:2023
- 资助金额:
$ 3.89万 - 项目类别:
Understanding the functional anatomy of nociceptive spinal output neurons
了解伤害性脊髓输出神经元的功能解剖结构
- 批准号:
10751126 - 财政年份:2023
- 资助金额:
$ 3.89万 - 项目类别:
The Anatomy of Online Reviews: Evidence from the Steam Store
在线评论剖析:来自 Steam 商店的证据
- 批准号:
2872725 - 财政年份:2023
- 资助金额:
$ 3.89万 - 项目类别:
Studentship