CGDnet: Cancer Gene Drug Network: Using patient-specific drug-gene networks for recommending targeted cancer therapies.
CGDnet:癌症基因药物网络:使用患者特定的药物基因网络来推荐靶向癌症治疗。
基本信息
- 批准号:9923991
- 负责人:
- 金额:$ 3.67万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-06-06 至 2020-05-31
- 项目状态:已结题
- 来源:
- 关键词:AffectBiological MarkersBiometryCancer PatientCancer cell lineClinicalClinical ResearchCommunitiesComputer softwareDataData AnalysesData SetFAIR principlesFailureGene MutationGene ProteinsGenesGoalsHospitalsImageryIndividualInformaticsInformation NetworksKRAS2 geneKnowledgeLeadLettersMEKsMalignant NeoplasmsMethodsMolecularMolecular BiologyMolecular ProfilingMovementMutationNetwork-basedOncogenesPathway interactionsPatientsPharmaceutical PreparationsPhysiciansPopulationPrevalenceProcessProteinsPublishingRecommendationReportingReproducibilityResearch DesignResearch PersonnelResearch SupportResistanceResourcesSignal PathwaySystemTestingVariantWorkactionable mutationanalytical toolanticancer researchbasecancer typeclinical decision supportclinical decision-makingcomputer frameworkcomputer sciencedata managementdata visualizationdesignevidence baseexperiencegenetic variantgenomic profilesimprovedimproved outcomeindividual patientinhibitor/antagonistinteractive toolknowledge basemembermethod developmentmolecular diagnosticsmolecular markermolecular oncologymultiple omicsoncologyopen sourcepersonalized cancer therapyprecision medicineprecision oncologyresponsesoftware developmentsuccesstargeted cancer therapytargeted treatmenttooltreatment risktumor
项目摘要
PROJECT SUMMARY/ABSTRACT:
Molecular profiling – the practice of molecularly testing tumors in order to find specific gene or protein
alterations which can be used to recommend targeted therapies – is increasingly used in oncology and is fast
becoming a major part of precision medicine. In practice, each patient or physician generally receives a list of
molecular anomalies and a list of therapies which are predicted to be beneficial or not beneficial based on the
tumor molecular profile. This may lead to a difficult process of prioritizing therapies for individual patients. In
the current proposal, we will develop computational network-based approaches to therapy recommendation by
using existing resources to inform the connections between drugs and gene or protein variants. We will
consider approaches both for creating “average” networks based on population-level data and for creating
“patient-specific” networks based on an individual’s specific tumor profile. We will also design and implement
an interactive data visualization approach for these networks which will be usable by both clinical researchers
and clinicians. The methods and tools developed as part of this project will be entirely reproducible and shared
with the community via open-source software packages and interactive tools. We believe our project could
eventually lead the way to improving the way therapies are targeted to cancer patients.
项目总结/摘要:
分子谱分析-对肿瘤进行分子检测以发现特定基因或蛋白质的做法
可用于推荐靶向治疗的改变-越来越多地用于肿瘤学,
成为精准医疗的重要组成部分。在实践中,每个患者或医生通常会收到一份清单,
分子异常和一系列的治疗方法,这些治疗方法根据
肿瘤分子谱这可能导致为个体患者优先考虑治疗的困难过程。在
根据目前的建议,我们将开发基于计算网络的治疗建议方法,
利用现有的资源来告知药物与基因或蛋白质变体之间的联系。我们将
考虑基于人口水平数据创建“平均”网络的方法,
基于个体的特定肿瘤概况的“患者特异性”网络。我们还将设计和实施
这些网络的交互式数据可视化方法,可供临床研究人员使用
和临床医生。作为本项目的一部分开发的方法和工具将完全可复制和共享
通过开源软件包和交互式工具与社区合作。我们相信我们的项目可以
最终引导改进针对癌症患者的治疗方法。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Simina Maria Boca其他文献
Simina Maria Boca的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
MRI and Biological Markers of Acute E-Cigarette Exposure in Smokers and Vapers
吸烟者和电子烟使用者急性电子烟暴露的 MRI 和生物标志物
- 批准号:
10490338 - 财政年份:2021
- 资助金额:
$ 3.67万 - 项目类别:
MRI and Biological Markers of Acute E-Cigarette Exposure in Smokers and Vapers
吸烟者和电子烟使用者急性电子烟暴露的 MRI 和生物标志物
- 批准号:
10353104 - 财政年份:2021
- 资助金额:
$ 3.67万 - 项目类别:
Investigating pollution dynamics of swimming pool waters by means of chemical and biological markers
利用化学和生物标记物研究游泳池水体的污染动态
- 批准号:
21K04320 - 财政年份:2021
- 资助金额:
$ 3.67万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
MRI and Biological Markers of Acute E-Cigarette Exposure in Smokers and Vapers
吸烟者和电子烟使用者急性电子烟暴露的 MRI 和生物标志物
- 批准号:
10688286 - 财政年份:2021
- 资助金额:
$ 3.67万 - 项目类别:
Novel biological markers for immunotherapy and comprehensive genetic analysis in thymic carcinoma
用于胸腺癌免疫治疗和综合遗传分析的新型生物标志物
- 批准号:
20K17755 - 财政年份:2020
- 资助金额:
$ 3.67万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Examination of Biological Markers Associated with Neurobehavioral and Neuropsychological Outcomes in Military Veterans with a History of Traumatic Brain Injury
与有脑外伤史的退伍军人的神经行为和神经心理结果相关的生物标志物的检查
- 批准号:
10578649 - 财政年份:2019
- 资助金额:
$ 3.67万 - 项目类别:
Examination of Biological Markers Associated with Neurobehavioral and Neuropsychological Outcomes in Military Veterans with a History of Traumatic Brain Injury
与有脑外伤史的退伍军人的神经行为和神经心理结果相关的生物标志物的检查
- 批准号:
10295141 - 财政年份:2019
- 资助金额:
$ 3.67万 - 项目类别:
Examination of Biological Markers Associated with Neurobehavioral and Neuropsychological Outcomes in Military Veterans with a History of Traumatic Brain Injury
与有脑外伤史的退伍军人的神经行为和神经心理结果相关的生物标志物的检查
- 批准号:
10041708 - 财政年份:2019
- 资助金额:
$ 3.67万 - 项目类别:
Examination of Biological Markers Associated with Neurobehavioral and Neuropsychological Outcomes in Military Veterans with a History of Traumatic Brain Injury
与有脑外伤史的退伍军人的神经行为和神经心理结果相关的生物标志物的检查
- 批准号:
9776149 - 财政年份:2019
- 资助金额:
$ 3.67万 - 项目类别:
Combining biological and non-biological markers to develop a model predictive of treatment response for individuals with depression
结合生物和非生物标志物来开发预测抑郁症患者治疗反应的模型
- 批准号:
2063934 - 财政年份:2018
- 资助金额:
$ 3.67万 - 项目类别:
Studentship