Mechanisms for bacterial dissemination in corneal infection
角膜感染中细菌传播的机制
基本信息
- 批准号:9918910
- 负责人:
- 金额:$ 4.79万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-05-01 至 2020-11-30
- 项目状态:已结题
- 来源:
- 关键词:ActinsActive SitesAffectAllelesBacteremiaBacteriaBioinformaticsCandidate Disease GeneCell DeathCell membraneCellsCellular biologyCorneaCorneal DiseasesCytoplasmDataDevelopmentDiseaseDoctor of PhilosophyElectron MicroscopyElectronsEngineeringEpithelialEpithelial CellsEpitheliumEventEyeFellowshipFibrosisGenesHumanImageImmunocompromised HostImmunofluorescence MicroscopyIn VitroIndividualInfectionInjuryInvadedKnock-outLeadLibrariesLifeMediatingMethodsMicrobial BiofilmsMicrotubulesModelingMotorMovementMusMutationNosocomial InfectionsOutcomePathogenesisPatientsPenetrationPhospholipasePilumPlasma CellsPneumoniaPolymerase Chain ReactionPostdoctoral FellowProcessPseudomonas aeruginosaPseudomonas aeruginosa infectionPublicationsPublishingRegulationRoleRouteSecond Messenger SystemsSolidSuggestionSurfaceTestingTheoretical modelTimeTrainingTranscriptUrinary tract infectionVacuoleVariantVirulenceWestern Blottingappendagebacterial geneticscell motilitycorneal epitheliumdepolymerizationdifferential expressionexperimental studyfollow-uphost-microbe interactionshuman pathogenin vivoin vivo Modelmouse modelmutantnovel strategiespreventprotein expressionsevere injurytooltraffickingtranscriptome sequencing
项目摘要
Project Summary
Pseudomonas aeruginosa is among the most common causes of blinding corneal disease, while
also being a major cause of life threating nosocomial infections such as pneumonia, bacteremia,
urinary tract infections (UTIs), and cytstic fibrosis (CF), targeting immunocompromised and
critically injured patients. Publications from the Fleiszig lab have shown that twitching motility, a
type of surface associated movement, contributes to the ability of P. aeruginosa to penetrate
human corneal epithelial cell multilayers in vitro and is critical to pathogenesis of P. aeruginosa
corneal infection in a mouse model in vivo. Key to P. aeruginosa pathogenesis in the cornea is
the capacity of the bacteria to invade corneal epithelial cells. While P. aeruginosa mutants that
lack twitching motility can invade epithelial cells, and replicate inside them just as efficiently as
wildtype bacteria, they have reduced capacity for exiting cells they have entered. During my
postdoctoral fellowship in the Fleiszig lab, I used imaging and various other methods to study the
mechanisms by which P. aeruginosa exits epithelial cells. Importantly, my preliminary data show
that exit does not necessarily follow cell death, suggesting active/deliberate mechanisms
contribute. My data further show that when twitching mutants invade and replicate in corneal
epithelial cells, they differ from wildtype P. aeruginosa in being unable to distribute themselves in
the cytoplasm and instead accumulate in aggregates. I have also screened a mutant library for
exit capacity, and have found that mutants in either of two phospholipases, PlcB or PA2155, are
exit defective. In contrast to twitching mutants, the phospholipase mutants spread normally
throughout the host cell cytoplasm. Thus, my data mechanistically separate the exit process into
two stages one dependent on twitching and the other dependent on phospholipases. My
theoretical model for exit is that P. aeruginosa uses twitching motility to avoid forming a biofilm
aggregate inside the cell and to access the host cell plasma membrane, where they use
phospholipase activity (e.g. of PlcB and PA2155) to alter the plasma membrane to provide an exit
route. Thus, in aim 1 I will the identify the genes transcripts that impact twitching mutant
aggregation and exit compared to wildtype, and in aim 2 I will determine if phospholipases
facilitate exit through their enzymatic activity. While contributing to our understanding of P.
aeruginosa pathogenesis, this project could ultimately contribute to development of strategies for
preventing and treating infections that act by preventing bacterial penetration through our
protective surface epithelia.
项目总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Vincent Nieto其他文献
Vincent Nieto的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Vincent Nieto', 18)}}的其他基金
Mechanisms for bacterial dissemination in corneal infection
角膜感染中细菌传播的机制
- 批准号:
9541945 - 财政年份:2018
- 资助金额:
$ 4.79万 - 项目类别:
相似海外基金
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
- 批准号:
2334970 - 财政年份:2024
- 资助金额:
$ 4.79万 - 项目类别:
Standard Grant
NSF-BSF: Towards a Molecular Understanding of Dynamic Active Sites in Advanced Alkaline Water Oxidation Catalysts
NSF-BSF:高级碱性水氧化催化剂动态活性位点的分子理解
- 批准号:
2400195 - 财政年份:2024
- 资助金额:
$ 4.79万 - 项目类别:
Standard Grant
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
- 批准号:
2334969 - 财政年份:2024
- 资助金额:
$ 4.79万 - 项目类别:
Standard Grant
Mechanochemical synthesis of nanocarbon and design of active sites for oxygen reducton/evolution reactions
纳米碳的机械化学合成和氧还原/演化反应活性位点的设计
- 批准号:
23K04919 - 财政年份:2023
- 资助金额:
$ 4.79万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Creation of porous inorganic frameworks with controlled structure of metal active sites by the building block method.
通过积木法创建具有金属活性位点受控结构的多孔无机框架。
- 批准号:
22KJ2957 - 财政年份:2023
- 资助金额:
$ 4.79万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Catalysis of Juxaposed Active Sites Created in Nanospaces and Their Applications
纳米空间中并置活性位点的催化及其应用
- 批准号:
23K04494 - 财政年份:2023
- 资助金额:
$ 4.79万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Generation of carbon active sites by modifying the oxygen containing functional groups and structures of carbons for utilizing to various catalytic reactions.
通过修饰碳的含氧官能团和结构来产生碳活性位点,用于各种催化反应。
- 批准号:
23K13831 - 财政年份:2023
- 资助金额:
$ 4.79万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
CAREER: CAS: Understanding the Chemistry of Palladium and Silyl Compounds to Design Catalyst Active Sites
职业:CAS:了解钯和甲硅烷基化合物的化学性质以设计催化剂活性位点
- 批准号:
2238379 - 财政年份:2023
- 资助金额:
$ 4.79万 - 项目类别:
Continuing Grant
CAS: Collaborative Research: Tailoring the Distribution of Transient vs. Dynamic Active Sites in Solid-Acid Catalysts and Their Impacts on Chemical Conversions
CAS:合作研究:定制固体酸催化剂中瞬时活性位点与动态活性位点的分布及其对化学转化的影响
- 批准号:
2154399 - 财政年份:2022
- 资助金额:
$ 4.79万 - 项目类别:
Standard Grant
Engineering of Active Sites in Heterogeneous Catalysts for Sustainable Chemical and Fuel Production.
用于可持续化学和燃料生产的多相催化剂活性位点工程。
- 批准号:
RGPIN-2019-06633 - 财政年份:2022
- 资助金额:
$ 4.79万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




