Molecular Mechanisms Controlling Formation of Basal Ganglia Circuitry
控制基底神经节回路形成的分子机制
基本信息
- 批准号:9918974
- 负责人:
- 金额:$ 57.88万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-04-01 至 2023-04-30
- 项目状态:已结题
- 来源:
- 关键词:AnatomyAnimalsAttention deficit hyperactivity disorderAxonBACH2 geneBasal GangliaBehaviorBehavioralBrainBrain DiseasesBrain regionCandidate Disease GeneCell DeathCell NucleusChildhoodCognitionCognitiveCognitive deficitsCorpus striatum structureDataDefectDevelopmentDiseaseEmbryoExhibitsFOXO1A geneFundingGene Expression ProfileGenesGeneticGenetic ModelsGilles de la Tourette syndromeGlobus PallidusGoalsHeterozygoteHumanHuntington DiseaseHyperactive behaviorImpaired cognitionIntellectual functioning disabilityMediatingMolecularMolecular GeneticsMotorMovementMusMutant Strains MiceNeuronsOutputParkinson DiseasePathway interactionsPhenotypePlayProsencephalonPublishingRegulatory T-LymphocyteReportingRoleSOX8 geneSocial FunctioningSubstantia nigra structureTelencephalonTestingTransgenic OrganismsVentricularautism spectrum disorderaxon growthcell typecognitive functionconditional mutantgenetic analysislocomotor deficitloss of functionmutantnerve supplyneuron developmentneuron lossneuronal survivalneuropsychiatric disordernovelnovel markeroligodendrocyte lineagepostnatalprematureprogenitorpsychostimulantrestorationsingle-cell RNA sequencingsocialtranscription factortranscriptome
项目摘要
The basal ganglia are known to regulate motor function and have recently been implicated in both social and cognitive
functions as well. As a result, these brain nuclei have been implicated in childhood disorders, ADHD, OCD, Tourette's
syndrome and autism, which display a spectrum of behavioral abnormalities. These childhood disorders have been
proposed to result from abnormal development/function of basal ganglia circuitry. The striatum represents the major
nucleus of the basal ganglia and the striatal projection neurons (SPNs) comprise the major neuronal subtype on which the
basal ganglia circuit is dependent. The direct pathway (d)SPNs project to the output nuclei of the basal ganglia, while the
indirect pathway (i)SPN axons innervate an intermediate nucleus and indirectly influencing the output nuclei though a
polysynaptic circuit. Balanced activity between these two pathways is fundamental for normal brain function. Despite the
importance of these striatal output pathways, little is known about the molecular genetic mechanisms controlling their
formation. In the previous funding cycle, we showed that the transcription factor Isl1 is required for the normal formation
of dSPNs. In its absence, these neurons are generated but do not survive and as a result, innervation of the output nuclei is
severely compromised. Isl1 conditional mutants (cKOs) exhibit behavioral abnormalities reminiscent of ADHD as they
are hyperactive and blunted to psychostimulant treatment. Moreover, we identified the transcription factor Sox8 in dSPNs.
Our data indicate that the direct pathway axons do not project properly in Sox8 homozygous mutants. However, unlike the
Isl1 cKOs, no SPN cell death was observed. Interestingly, Sox8 heterozygotes showed a partial phenotype with reduced
direct pathway axonal innervation. Both the heterozygous and homozygous Sox8 animals exhibited hyperactivity,
reminiscent of Isl1 cKOs, as well as, cognitive impairments. The main goal of this proposal is to understand the molecular
genetic pathways controlling the development of dSPNs and specifically the roles of the transcription factors Sox8, Bach2
and Arx with respect to neuronal survival/differentiation and axon outgrowth. We will achieve this by testing the
following hypotheses: 1) Sox8 regulates dSPN axon outgrowth downstream of Ebf1 by controlling the timing of
maturation, 2) Isl1 regulates a Foxo/Bach2-mediated survival/differentiation pathway in developing dSPNs and 3) Arx is
required for development of dSPNs and their altered development in Arx mutants accounts for certain behavioral defects
observed in these mutants. Our approach will combine molecular and cellular analysis of genetic mouse mutants
exhibiting defined alterations in dSPN connectivity and correlate this with specific behavioral abnormalities in motor and
cognitive function. The genetic models in this proposal may inform human studies of ADHD, OCD, Tourette's as well as
autism and intellectual disabilities.
众所周知,基底节调节运动功能,最近被认为与社会和认知有关。
功能也是如此。因此,这些大脑核团与儿童障碍、ADHD、强迫症、抽动症有关
综合症和自闭症,表现出一系列行为异常。这些童年时期的障碍一直是
被认为是由于基底节回路的异常发育/功能所致。纹状体代表大脑皮层
基底节核和纹状体投射神经元(SPN)构成主要的神经元亚型,其上的
基底节环路是依赖的。直接通路(D)SPN投射到基底节的输出核团,而
间接通路(I)SPN轴突支配中间核,并通过
多突触回路。这两条通路之间的平衡活动是正常大脑功能的基础。尽管
这些纹状体输出途径的重要性,对控制它们的分子遗传机制知之甚少
队形。在之前的资金周期中,我们证明了转录因子isl1是正常形成所必需的。
DSPN的数量。在没有它的情况下,这些神经元会产生,但不会存活,因此,输出核团的神经支配是
严重受损。ISL1条件突变(CKO)表现出行为异常,使人联想到ADHD
过度活跃,对精神刺激治疗反应迟钝。此外,我们还在dSPN中鉴定了转录因子Sox8。
我们的数据表明,在Sox8纯合子突变体中,直接路径轴突不能正确投射。然而,与
1cKOS,未见SPN细胞死亡。有趣的是,Sox8杂合子表现出部分表型
直接通路轴突神经支配。杂合子和纯合子的Sox8动物都表现出多动,
这让人想起IS11的cKO,以及认知障碍。这项提议的主要目标是理解分子
控制dSPN发育的遗传途径,特别是转录因子Sox8、Bach2的作用
Arx在神经元存活/分化和轴突生长方面的作用。我们将通过测试
以下假设:1)Sox8通过控制时间调控dSPN轴突在EBF1下游的生长
成熟,2)Isl1调节FOXO/Bach2介导的dSPN存活/分化途径,3)Arx IS
在Arx突变体中,dSPN的发育和它们的改变发育所需的蛋白质可以解释某些行为缺陷
在这些突变体中观察到。我们的方法将结合对小鼠遗传突变的分子和细胞分析
表现出dSPN连接性的明确改变,并与运动和运动中的特定行为异常相关
认知功能。这项建议中的遗传模型可能会为ADHD、OCD、Tourette‘s以及
自闭症和智力残疾。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KENNETH J CAMPBELL其他文献
KENNETH J CAMPBELL的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KENNETH J CAMPBELL', 18)}}的其他基金
Roles of Gsx factors in basal ganglia development
Gsx 因子在基底神经节发育中的作用
- 批准号:
10544505 - 财政年份:2022
- 资助金额:
$ 57.88万 - 项目类别:
Roles of Gsx factors in basal ganglia development
Gsx 因子在基底神经节发育中的作用
- 批准号:
10339513 - 财政年份:2022
- 资助金额:
$ 57.88万 - 项目类别:
Molecular control of neurogenesis in the adult subventricular zone
成人室下区神经发生的分子控制
- 批准号:
8641092 - 财政年份:2010
- 资助金额:
$ 57.88万 - 项目类别:
Molecular Mechanisms Controlling Formation of Basal Ganglia Circuitry
控制基底神经节回路形成的分子机制
- 批准号:
10390465 - 财政年份:2010
- 资助金额:
$ 57.88万 - 项目类别:
Molecular Mechanisms Controlling Formation of Basal Ganglia Circuitry
控制基底神经节回路形成的分子机制
- 批准号:
8211070 - 财政年份:2010
- 资助金额:
$ 57.88万 - 项目类别:
Molecular control of neurogenesis in the adult subventricular zone
成人室下区神经发生的分子控制
- 批准号:
8446434 - 财政年份:2010
- 资助金额:
$ 57.88万 - 项目类别:
Molecular control of neurogenesis in the adult subventricular zone
成人室下区神经发生的分子控制
- 批准号:
8240502 - 财政年份:2010
- 资助金额:
$ 57.88万 - 项目类别:
Molecular control of neurogenesis in the adult subventricular zone
成人室下区神经发生的分子控制
- 批准号:
8883856 - 财政年份:2010
- 资助金额:
$ 57.88万 - 项目类别:
Molecular control of neurogenesis in the adult subventricular zone
成人室下区神经发生的分子控制
- 批准号:
8039898 - 财政年份:2010
- 资助金额:
$ 57.88万 - 项目类别:
Molecular control of neurogenesis in the adult subventricular zone
成人室下区神经发生的分子控制
- 批准号:
7853503 - 财政年份:2010
- 资助金额:
$ 57.88万 - 项目类别:
相似海外基金
The earliest exploration of land by animals: from trace fossils to numerical analyses
动物对陆地的最早探索:从痕迹化石到数值分析
- 批准号:
EP/Z000920/1 - 财政年份:2025
- 资助金额:
$ 57.88万 - 项目类别:
Fellowship
Animals and geopolitics in South Asian borderlands
南亚边境地区的动物和地缘政治
- 批准号:
FT230100276 - 财政年份:2024
- 资助金额:
$ 57.88万 - 项目类别:
ARC Future Fellowships
The function of the RNA methylome in animals
RNA甲基化组在动物中的功能
- 批准号:
MR/X024261/1 - 财政年份:2024
- 资助金额:
$ 57.88万 - 项目类别:
Fellowship
Ecological and phylogenomic insights into infectious diseases in animals
对动物传染病的生态学和系统发育学见解
- 批准号:
DE240100388 - 财政年份:2024
- 资助金额:
$ 57.88万 - 项目类别:
Discovery Early Career Researcher Award
RUI:OSIB:The effects of high disease risk on uninfected animals
RUI:OSIB:高疾病风险对未感染动物的影响
- 批准号:
2232190 - 财政年份:2023
- 资助金额:
$ 57.88万 - 项目类别:
Continuing Grant
RUI: Unilateral Lasing in Underwater Animals
RUI:水下动物的单侧激光攻击
- 批准号:
2337595 - 财政年份:2023
- 资助金额:
$ 57.88万 - 项目类别:
Continuing Grant
A method for identifying taxonomy of plants and animals in metagenomic samples
一种识别宏基因组样本中植物和动物分类的方法
- 批准号:
23K17514 - 财政年份:2023
- 资助金额:
$ 57.88万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Analysis of thermoregulatory mechanisms by the CNS using model animals of female-dominant infectious hypothermia
使用雌性传染性低体温模型动物分析中枢神经系统的体温调节机制
- 批准号:
23KK0126 - 财政年份:2023
- 资助金额:
$ 57.88万 - 项目类别:
Fund for the Promotion of Joint International Research (International Collaborative Research)
Using novel modelling approaches to investigate the evolution of symmetry in early animals.
使用新颖的建模方法来研究早期动物的对称性进化。
- 批准号:
2842926 - 财政年份:2023
- 资助金额:
$ 57.88万 - 项目类别:
Studentship
Study of human late fetal lung tissue and 3D in vitro organoids to replace and reduce animals in lung developmental research
研究人类晚期胎儿肺组织和 3D 体外类器官在肺发育研究中替代和减少动物
- 批准号:
NC/X001644/1 - 财政年份:2023
- 资助金额:
$ 57.88万 - 项目类别:
Training Grant














{{item.name}}会员




