Structure and Function of Essential Nucleoprotein ComplexesAlong a Viral Genome Packaging Pathway
病毒基因组包装途径中必需核蛋白复合物的结构和功能
基本信息
- 批准号:9920164
- 负责人:
- 金额:$ 37万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-05-01 至 2022-04-30
- 项目状态:已结题
- 来源:
- 关键词:ATP HydrolysisATP phosphohydrolaseAddressAntibiotic ResistanceAntiviral AgentsArchitectureBacteriophage lambdaBacteriophagesBehaviorBindingBiochemicalBiologicalBiological AssayBiophysicsBudgetsCapsidCatalytic DomainChemicalsComplexCouplingCryoelectron MicroscopyDNADNA Restriction EnzymesDevelopmentDouble Stranded DNA VirusElectron MicroscopyEnzymesEvolutionExcisionGenomeGoalsHealthHoloenzymesHumanHuman MicrobiomeIndividualKineticsMediatingModelingMolecularMotorNucleoproteinsNucleotidesPathogenicityPathway interactionsPlayPreparationProcessReactionResearchRoleSiteStructureSystemTestingTherapeuticTimeUrsidae FamilyViralViral GenomeViral PackagingVirusVirus AssemblyWorkdesignexperienceexperimental studyhuman diseasein vitro Assayin vivoinsightmonomermultitasknanotherapeuticnovelprogramssingle moleculestoichiometryterminasetheranosticstoolviral DNAvirtualvirus development
项目摘要
Project Summary.
Bacteriophages play a major role in bacterial evolution, in mediating bacterial pathogenicity and antibiotic
resistance, in modulating the human microbiome and they have great potential as nanotherapeutics.
Understanding these issues with respect to human disease and harnessing their potential as theranostic
agents requires a fundamental understanding of virus development. The genome packaging pathways
are strongly conserved in the large double-stranded DNA (dsDNA) viruses, both prokaryotic and
eukaryotic. In this broad class of viruses, a terminase enzyme is responsible for (i) excision of an
individual genome from concatemeric substrate (genome maturation) and (ii) translocation of DNA into
a procapsid shell (genome packaging). These functions are catalyzed by terminase enzymes
assembled into discrete maturation and packaging motor complexes. Terminases are composed of a
catalytic subunit and a DNA recognition subunit, both of which are essential for genome packaging in
vivo. Structural and single-molecule studies have provided insight into packaging motor complexes
composed of the catalytic subunit in isolation; however, there is little information on motor complexes
containing both essential subunits. Further, there is a dearth of structural information on the equally
essential maturation complex precursor. This is due, in part, to the absence of well-characterized
holoenzyme preparations and a dearth of in vitro assays to comprehensively assess the pathway. We
have developed rigorous assays in which the biochemical, biophysical and structural features of the
lambda genome-packaging pathway can be defined in great detail. Using these tools, we propose to
characterize the structural (cryo-electron microscopy) and functional (biophysical, kinetic) features of the
maturation complex, which show mechanistic similarity to the tetrameric type IIE/F restriction
endonucleases. We directly address an emerging controversy relating to the DNA architecture in the
maturation complex that mediates complex stability. We next test the hypothesis that the lambda motor
also functions as a tetrameric complex and that ATP hydrolysis by the motor is strongly cooperative;
these features represent a significant departure from currently accepted paradigms. Finally, we
characterize a putative "nucleotide switch" mechanism that controls the transition from the stable
maturation complex to the dynamic motor complex bound to the capsid and we rigorously define the
energy budget of the translocating motor. The proposed studies will provide structural and mechanistic
detail on two sequential packaging complexes and their transition through the genome-packaging
pathway. These features are shared by all of the dsDNA viruses that package genomes from
concatemeric precursors (phage, herpes) and the results will be of broad and general significance.
项目摘要。
噬菌体在细菌进化、介导细菌致病性和抗生素等方面发挥着重要作用
耐药性,在调节人类微生物组中,它们具有作为纳米治疗剂的巨大潜力。
了解这些与人类疾病有关的问题,并利用它们作为治疗诊断学的潜力
病原体需要对病毒发展有基本的了解。基因组包装途径
在大双链DNA(dsDNA)病毒中是高度保守的,包括原核和
真核生物在这一广泛类别的病毒中,末端酶负责(i)切除病毒的末端,
单个基因组从多联体底物(基因组成熟)和(ii)DNA易位到
原衣壳壳(基因组包装)。这些功能由末端酶催化
组装成离散的成熟和包装运动复合体。终端由一个
催化亚基和DNA识别亚基,这两个亚基对于基因组包装都是必不可少的。
vivo.结构和单分子的研究提供了深入了解包装电机复合物
由催化亚基组成的隔离;然而,很少有关于马达复合体的信息
含有两种基本亚基。此外,同样缺乏结构信息,
必需成熟复合物前体这部分是由于缺乏良好的特征,
全酶制剂和缺乏体外试验来全面评估该途径。我们
已经开发了严格的分析,其中的生物化学,生物物理和结构特征的
λ基因组包装途径可以更详细地定义。利用这些工具,我们建议
表征的结构(冷冻电子显微镜)和功能(生物物理,动力学)的特点,
成熟复合物,其显示与四聚体IIE/F型限制的机制相似性
核酸内切酶。我们直接解决一个新出现的争议有关的DNA架构在
成熟复合体,介导复合体的稳定性。我们接下来测试的假设,
也作为四聚体复合物起作用,并且由马达引起的ATP水解是强烈合作的;
这些特征代表了与当前接受的范例的显著偏离。最后我们
描述了一种假定的“核苷酸开关”机制,该机制控制从稳定的
成熟复合物与结合到衣壳的动态运动复合物结合,并且我们严格定义了
移位马达的能量预算。拟议的研究将提供结构和机制
详细介绍了两个顺序包装复合物及其通过基因组包装的过渡
通路这些特征是所有dsDNA病毒所共有的,这些dsDNA病毒包装来自
多联体前体(噬菌体、疱疹),并且结果将具有广泛和普遍意义。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Carlos Enrique Catalano其他文献
Letter to the Editor: Assignment of the 1H, 13C, and 15N resonances of the DNA binding domain of gpNu1, a genome packaging protein from bacteriophage λ
- DOI:
10.1023/a:1008306326438 - 发表时间:
2000-09-01 - 期刊:
- 影响因子:1.900
- 作者:
Tonny de Beer;Marcos Ortega;Nancy Berton;Qin Yang;Michael Overduin;Carlos Enrique Catalano - 通讯作者:
Carlos Enrique Catalano
Carlos Enrique Catalano的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Carlos Enrique Catalano', 18)}}的其他基金
Structure and Function of Essential Nucleoprotein Complexes Along a Viral Genome Packaging Pathway
病毒基因组包装途径中必需核蛋白复合物的结构和功能
- 批准号:
10660775 - 财政年份:2018
- 资助金额:
$ 37万 - 项目类别:
Mechanisms of Viral DNA Packaging: Biophysical, Biochemical, & Genetic Analysis
病毒 DNA 包装机制:生物物理、生物化学、
- 批准号:
8663379 - 财政年份:2011
- 资助金额:
$ 37万 - 项目类别:
Mechanisms of Viral DNA Packaging: Biophysical, Biochemical, & Genetic Analysis
病毒 DNA 包装机制:生物物理、生物化学、
- 批准号:
8460115 - 财政年份:2011
- 资助金额:
$ 37万 - 项目类别:
Mechanisms of Viral DNA Packaging: Biophysical, Biochemical, & Genetic Analysis
病毒 DNA 包装机制:生物物理、生物化学、
- 批准号:
8653579 - 财政年份:2011
- 资助金额:
$ 37万 - 项目类别:
Mechanisms of Viral DNA Packaging: Biophysical, Biochemical, & Genetic Analysis
病毒 DNA 包装机制:生物物理、生物化学、
- 批准号:
8260552 - 财政年份:2011
- 资助金额:
$ 37万 - 项目类别:
Mechanisms of Viral DNA Packaging: Biophysical, Biochemical, & Genetic Analysis
病毒 DNA 包装机制:生物物理、生物化学、
- 批准号:
8109182 - 财政年份:2011
- 资助金额:
$ 37万 - 项目类别:
Biochemical and Biophysical Characterization of HIV Env Trimer Spikes using Nanod
使用 Nanod 对 HIV 包膜三聚体尖峰进行生化和生物物理表征
- 批准号:
7929402 - 财政年份:2010
- 资助金额:
$ 37万 - 项目类别:
Biochemical and Biophysical Characterization of HIV Env Trimer Spikes using Nanod
使用 Nanod 对 HIV 包膜三聚体尖峰进行生化和生物物理表征
- 批准号:
8132448 - 财政年份:2010
- 资助金额:
$ 37万 - 项目类别:
Mechanistic Studies on a Viral DNA Packaging Machine
病毒DNA包装机的机理研究
- 批准号:
7060385 - 财政年份:2001
- 资助金额:
$ 37万 - 项目类别:














{{item.name}}会员




