4D ventricle-valve model risk stratification for planning surgical treatment of ischemic mitral regurgitation
4D 心室瓣膜模型风险分层用于规划缺血性二尖瓣反流的手术治疗
基本信息
- 批准号:9922382
- 负责人:
- 金额:$ 3.26万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-05-01 至 2021-04-30
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAffectAgeAlgorithmsAmericanAnatomic ModelsAnatomyAtlasesBiological MarkersCardiacClinicalCollaborationsComputational algorithmData SetDiseaseFailureFunctional disorderGoalsImageImage AnalysisIncidenceLabelLeftLeft Ventricular RemodelingLeft ventricular structureMachine LearningManualsMeasurementMedialMentorsMitral ValveMitral Valve InsufficiencyModelingMotionMyocardial InfarctionOperating RoomsOperative Surgical ProceduresOutcomeOutputPartner in relationshipPatientsPlant RootsPopulationPredictive ValueProceduresRecurrenceReproducibilityResearchRisk stratificationSeriesSeveritiesShapesStructureSubgroupSurgeonSurvival RateTechnologyTestingThree-dimensional analysisTimeTransesophageal EchocardiographyTranslatingVentricularaging populationcase-by-case basisclinically translatableexperiencehigh riskimaging Segmentationimaging biomarkerimprovedimproved outcomeindividual patientmorphometrymortalitymuscular structurepapillary musclerandomized trialrepairedsegmentation algorithmtooltreatment strategyvalve replacementvirtual
项目摘要
Project Summary/Abstract
Ischemic mitral regurgitation (IMR) is a disease where the normal mitral valve (MV) structure is dysfunctional
due to left ventricular (LV) remodeling after a myocardial infarction (MI). IMR affects nearly 3 million Americans
and the magnitude of this problem is expected to grow as the population ages. IMR has a substantial mortality
rate that is associated with even mild MR severity. Mitral valve repair with undersized ring annuloplasty has been
the preferred treatment strategy for IMR; however, the recurrence of moderate or severe IMR within 12 months
of surgery is common. Recent high profile results from the Cardiothoracic Surgical Trials Network (CTSN) mul-
ticenter randomized trials on IMR have confirmed a high incidence of early recurrent IMR. More importantly,
these studies highlighted the adverse impact of recurrent IMR on LV remodeling and clinical outcomes. The
CTSN trials demonstrated no significant difference in LV volume reduction or survival at 12 and 24 months
between repair and replacement groups; however, subgroup analysis demonstrated that repair patients that
developed recurrent IMR had no reduction in LV volume while repair patients without recurrence experienced
LV volume reduction that was superior to patients having valve replacement. The results of the CTSN IMR trials
indicate an unmet need for a pre-operative risk stratification tool that reliably predicts MV repair failure. Such a
tool would significantly reduce the problem of recurrent IMR by performing valve repair only in patients likely to
experience a durable result and performing valve replacement in patients with high risk of recurrence. The long
term goal is to improve quality of surgical therapy in IMR by improving risk-stratification pre-operatively using
image analysis tools. The overall objective of this proposal is to improve the prediction IMR recurrence by ex-
panding this model to include the left ventricle (LV). The rationale is that while IMR manifests as MV malcoapta-
tion, the root cause of the disease is LV remodeling. The central hypothesis is that features extracted from the
integrated left ventricular and mitral valve (LVMV) model will predict recurrence more accurately than the current
MV-only model. To fulfill this objective and test the central hypothesis by pursuing the following specific aims: 1)
Develop the 4D integrated LVMV model and compare the accuracy of fitting this model to intraoperative 3DTE
images to that of the existing MV-only model. 2) Assess the ability of biomarkers derived from the integrated
LVMV model to predict IMR recurrence, and compare to the predictive value of the MV-only model. The project
is significant because, if successful, the integrated LVMV model will be incorporated into the Gorman lab ongoing
effort translating this technology to the operating room, thus improving survival rates, reducing the impending
clinical burden and the number of repeated procedures.
项目概要/摘要
缺血性二尖瓣反流 (IMR) 是一种正常二尖瓣 (MV) 结构出现功能障碍的疾病
由于心肌梗死(MI)后左心室(LV)重塑。 IMR 影响近 300 万美国人
随着人口老龄化,这一问题的严重性预计会加剧。 IMR 死亡率很高
甚至与轻度 MR 严重程度相关的比率。采用尺寸较小的环瓣环成形术修复二尖瓣
IMR 的首选治疗策略;然而,12个月内中度或重度IMR复发
手术的情况很常见。心胸外科试验网络 (CTSN) 近期备受瞩目的结果
ticenter 关于 IMR 的随机试验已证实早期复发 IMR 的发生率很高。更重要的是,
这些研究强调了复发性 IMR 对左室重构和临床结果的不利影响。这
CTSN 试验表明 12 个月和 24 个月时左心室容量减少或生存率没有显着差异
维修组和更换组之间;然而,亚组分析表明,修复患者
发生复发性 IMR 的患者左心室体积没有减少,而未复发的修复患者则经历了
左心室容量减少效果优于瓣膜置换术患者。 CTSN IMR 试验的结果
表明对可靠预测 MV 修复失败的术前风险分层工具的需求尚未得到满足。这样一个
该工具仅对可能发生瓣膜修复的患者进行瓣膜修复,从而显着减少复发性 IMR 问题
体验持久的结果并对复发风险高的患者进行瓣膜置换术。长的
长期目标是通过改善术前风险分层来提高 IMR 手术治疗的质量
图像分析工具。该提案的总体目标是通过前改进预测 IMR 复发
使该模型包含左心室 (LV)。基本原理是,虽然 IMR 表现为 MV malcoapta-
该病的根本原因是左心室重构。中心假设是从
综合左心室和二尖瓣(LVMV)模型将比目前的模型更准确地预测复发
仅限 MV 的型号。为了实现这一目标并通过追求以下具体目标来检验中心假设:1)
开发 4D 集成 LVMV 模型,并比较该模型与术中 3DTE 的拟合精度
图像与现有仅 MV 模型的图像相比。 2) 评估源自综合的生物标志物的能力
LVMV 模型预测 IMR 复发,并与仅 MV 模型的预测值进行比较。项目
意义重大,因为如果成功,集成的 LVMV 模型将被纳入正在进行的 Gorman 实验室
努力将这项技术转化为手术室,从而提高生存率,减少即将发生的情况
临床负担和重复手术的次数。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ahmed Aly其他文献
Ahmed Aly的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ahmed Aly', 18)}}的其他基金
4D ventricle-valve model risk stratification for planning surgical treatment of ischemic mitral regurgitation
4D 心室瓣膜模型风险分层用于规划缺血性二尖瓣反流的手术治疗
- 批准号:
9754718 - 财政年份:2018
- 资助金额:
$ 3.26万 - 项目类别:
相似海外基金
Hormone therapy, age of menopause, previous parity, and APOE genotype affect cognition in aging humans.
激素治疗、绝经年龄、既往产次和 APOE 基因型会影响老年人的认知。
- 批准号:
495182 - 财政年份:2023
- 资助金额:
$ 3.26万 - 项目类别:
Investigating how alternative splicing processes affect cartilage biology from development to old age
研究选择性剪接过程如何影响从发育到老年的软骨生物学
- 批准号:
2601817 - 财政年份:2021
- 资助金额:
$ 3.26万 - 项目类别:
Studentship
RAPID: Coronavirus Risk Communication: How Age and Communication Format Affect Risk Perception and Behaviors
RAPID:冠状病毒风险沟通:年龄和沟通方式如何影响风险认知和行为
- 批准号:
2029039 - 财政年份:2020
- 资助金额:
$ 3.26万 - 项目类别:
Standard Grant
Neighborhood and Parent Variables Affect Low-Income Preschool Age Child Physical Activity
社区和家长变量影响低收入学龄前儿童的身体活动
- 批准号:
9888417 - 财政年份:2019
- 资助金额:
$ 3.26万 - 项目类别:
The affect of Age related hearing loss for cognitive function
年龄相关性听力损失对认知功能的影响
- 批准号:
17K11318 - 财政年份:2017
- 资助金额:
$ 3.26万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
- 批准号:
9320090 - 财政年份:2017
- 资助金额:
$ 3.26万 - 项目类别:
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
- 批准号:
10166936 - 财政年份:2017
- 资助金额:
$ 3.26万 - 项目类别:
Affect regulation and Beta Amyloid: Maturational Factors in Aging and Age-Related Pathology
影响调节和 β 淀粉样蛋白:衰老和年龄相关病理学中的成熟因素
- 批准号:
9761593 - 财政年份:2017
- 资助金额:
$ 3.26万 - 项目类别:
How age dependent molecular changes in T follicular helper cells affect their function
滤泡辅助 T 细胞的年龄依赖性分子变化如何影响其功能
- 批准号:
BB/M50306X/1 - 财政年份:2014
- 资助金额:
$ 3.26万 - 项目类别:
Training Grant
Inflamm-aging: What do we know about the effect of inflammation on HIV treatment and disease as we age, and how does this affect our search for a Cure?
炎症衰老:随着年龄的增长,我们对炎症对艾滋病毒治疗和疾病的影响了解多少?这对我们寻找治愈方法有何影响?
- 批准号:
288272 - 财政年份:2013
- 资助金额:
$ 3.26万 - 项目类别:
Miscellaneous Programs