Joint Bayesian analysis of single-molecule colocalization images and kinetics
单分子共定位图像和动力学的联合贝叶斯分析
基本信息
- 批准号:9923002
- 负责人:
- 金额:$ 32.34万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-08-01 至 2022-04-30
- 项目状态:已结题
- 来源:
- 关键词:AdoptedAlgorithmsBayesian AnalysisBayesian MethodBindingBiochemicalBiochemistryBioinformaticsBiological ProcessBiologyCell ExtractsCell physiologyCellsChemicalsClassificationCommunicable DiseasesComplexComputer softwareCryoelectron MicroscopyDNADataData AnalysesData SetDevelopmentDiscriminationDiseaseEnzymesFluorescenceFluorescence MicroscopyFluorescent DyesGene Expression RegulationGenomicsGoalsHealthHumanHuman BiologyImageImage AnalysisIndividualJointsKineticsLabelLaboratoriesManualsMarkov ChainsMessenger RNAMetabolic DiseasesMethodsMicroscopeModelingMolecularMolecular MachinesMotorNucleic AcidsOrganismOutcomePathway interactionsPerformancePharmaceutical PreparationsPhotobleachingPhotonsProbabilityProcessProteinsPublic HealthRNARNA SplicingReactionResearchResolutionRibosomesSeriesSpectrum AnalysisSpliceosomesSpottingsSystemTechniquesTestingTimeWorkanalytical methodbaseexperienceexperimental studyimprovedinstrumentationlarge datasetslight microscopymacromoleculemarkov modelmicroscopic imagingmultidimensional datanovelnovel strategiesopen sourceprotein functionprotein structurereconstitutionsingle moleculestatisticsstoichiometrytheoriestwo-dimensional
项目摘要
Project Summary
A central concern of the present post-genomic era of biology is understanding at the molecular level the
chemical and physical mechanisms by which the protein and RNA machines that perform all cellular functions
operate. Multi-wavelength single-molecule fluorescence co-localization techniques (“CoSMoS”; co-localization
single-molecule spectroscopy) methods have been widely adopted and used to elucidate the functional
mechanisms of a broad range of macromolecular machines ranging from individual motor enzymes to the
ribosome and spliceosome. However, efficient and accurate CoSMoS data analysis, particularly of large,
multi-dimensional datasets, remains challenging. CoSMoS datasets are inherently difficult to analyze because
observations of thermally-driven single-molecule processes at the limited excitation intensities needed to avoid
photobleaching are intrinsically noisy and stochastic and thus would benefit from objective methods based on
optimized statistical theory to derive accurate conclusions.
This application proposes a new approach to CoSMoS data analysis based on Bayesian image
classification, Bayesian Markov chain Monte Carlo, and other statistics-based methods. The overall project
goal is to produce analytical methods that are more accurate than existing approaches, readily scalable to
large datasets, and are more reliable, even in the hands of less experienced users. In particular, we will
develop algorithms and implement software that will 1) make full use of the information contained in the two-
dimensional CoSMoS images, 2) use objective, statistically rigorous approaches to calculate the probability of
a given molecular species being present in each image, 3) integrate kinetic analysis with image classification to
allow the most accurate conclusions about molecular mechanisms based on available data, and 4) eliminate
the manual analysis and subjective parameter tweaking that introduce bias in existing analytical methods. The
developed models and algorithms will be refined and validated through thorough testing against a broad range
of simulated and known-outcome empirical data sets. The specific aims of the project are to: 1) enhance the
Time-Independent Bayesian Spot Discrimination algorithm and characterize its performance, 2) develop,
implement and characterize a time-dependent Joint Bayesian Discrimination/Hidden Markov Modeling
(BD/HMM) algorithm to derive molecular mechanisms from CoSMoS data, and 3) develop and distribute a
usable, documented, open-source software package for Bayesian CoSMoS image analysis.
项目摘要
目前生物学的后基因组时代的一个中心问题是在分子水平上理解
蛋白质和RNA机器执行所有细胞功能的化学和物理机制
做手术吧。多波长单分子荧光共定位技术(“COSMOS”)
单分子光谱学)方法已被广泛采用并用于阐明功能
大范围的大分子机器的机理,从单个电机酶到
核糖体和剪接体。然而,高效和准确的COSMOS数据分析,特别是大型、
多维数据集,仍然具有挑战性。COSMOS数据集本质上很难分析,因为
在需要避免的有限激发强度下对热驱动单分子过程的观测
光漂白本质上是噪声和随机的,因此将受益于基于
优化统计理论,得出准确的结论。
该应用为基于贝叶斯图像的COSMOS数据分析提出了一种新的方法
分类、贝叶斯马尔可夫链蒙特卡罗等基于统计的方法。整个项目
目标是产生比现有方法更准确、易于扩展的分析方法
大型数据集,更可靠,即使在经验较少的用户手中也是如此。特别是,我们将
开发算法和实现软件,以1)充分利用两个文件中包含的信息-
维度宇宙图像,2)使用客观的、统计上严格的方法来计算
每个图像中存在一个给定的分子物种,3)将动力学分析与图像分类相结合
允许基于现有数据得出关于分子机制的最准确的结论,以及4)消除
人工分析和主观参数调整在现有分析方法中引入了偏差。这个
开发的模型和算法将通过针对广泛范围的全面测试进行改进和验证
模拟的和已知结果的经验数据集。该项目的具体目标是:1)加强
与时间无关的贝叶斯斑点识别算法及其性能表征
时变联合贝叶斯判别/隐马尔可夫模型的实现与表征
(BD/HMM)算法从COSMOS数据中推导出分子机制,以及3)开发和分发
用于贝叶斯宇宙图像分析的可用的、有文档记录的开源软件包。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JEFF GELLES其他文献
JEFF GELLES的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JEFF GELLES', 18)}}的其他基金
Joint Bayesian analysis of single-molecule colocalization images and kinetics
单分子共定位图像和动力学的联合贝叶斯分析
- 批准号:
9752604 - 财政年份:2018
- 资助金额:
$ 32.34万 - 项目类别:
Molecular Mechanisms coordinating the actin and microtubule cytoskeletons
协调肌动蛋白和微管细胞骨架的分子机制
- 批准号:
9270046 - 财政年份:2012
- 资助金额:
$ 32.34万 - 项目类别:
Coordination of the actin and microtubule cytoskeletons
肌动蛋白和微管细胞骨架的协调
- 批准号:
8233885 - 财政年份:2012
- 资助金额:
$ 32.34万 - 项目类别:
Molecular Mechanisms coordinating the actin and microtubule cytoskeletons
协调肌动蛋白和微管细胞骨架的分子机制
- 批准号:
9096423 - 财政年份:2012
- 资助金额:
$ 32.34万 - 项目类别:
Coordination of the actin and microtubule cytoskeletons
肌动蛋白和微管细胞骨架的协调
- 批准号:
8454423 - 财政年份:2012
- 资助金额:
$ 32.34万 - 项目类别:
Coordination of the actin and microtubule cytoskeletons
肌动蛋白和微管细胞骨架的协调
- 批准号:
8613495 - 财政年份:2012
- 资助金额:
$ 32.34万 - 项目类别:
Quantitative Biology: a Graduate Curriculum Linking the Physical and Biomedical S
定量生物学:连接物理和生物医学的研究生课程
- 批准号:
8091241 - 财政年份:2009
- 资助金额:
$ 32.34万 - 项目类别:
Single-molecule visualization of transcription regulation mechanisms
转录调控机制的单分子可视化
- 批准号:
7931231 - 财政年份:2009
- 资助金额:
$ 32.34万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 32.34万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 32.34万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 32.34万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 32.34万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 32.34万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 32.34万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 32.34万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 32.34万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 32.34万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 32.34万 - 项目类别:
Continuing Grant














{{item.name}}会员




