Metamaterial-Enabled magnetic Resonance Imaging Enhancement

超材料磁共振成像增强

基本信息

项目摘要

Project Summary The proposal herein seeks to potentiate magnetic resonance imaging (MRI) using metamaterials in order to improve signal-to-noise ratio (SNR). MRI represents a cornerstone among the diagnostic tools available in modern healthcare. There has been an ongoing drive towards increasing static magnetic fields of MRI systems over the previous two decades in an effort to improve SNR, which may be translated into improved image resolution or decreasing scan times. However, the development of increasingly powerful magnetic fields incurs several trade-offs, including financial costs, safety concerns, and a host of image artifacts, among others. Alternative approaches that have also been developed in order to improve the overall SNR in MRI include the development of advanced RF coil technologies as well as the use of gadolinium-based contrast agents, both of which are routinely applied in the clinic. More recently, early efforts towards the application of metamaterials in MRI have been reported to enable improvements in SNR and efficiency through their capacity to interact with electromagnetic radiation in a novel fashion. While promising, the reported efforts applying MMs to MRI remain impractical and fail to realize the full potential of these unique materials. In this work, the use of metamaterials in MRI will be more fully developed, allowing for an engineered control of the RF electromagnetic field in MRI. Ultimately, this approach offers the potential to dramatically boost SNR without increasing the static magnetic field of the MRI system. In this work, metamaterials featuring metallic helices will be developed and optimized for operation at both 1.5T and 3.0T MRI platforms. Furthermore, tunable metamaterials based on the integration of a nonlinear material will be designed, yielding the capacity for RF enhancement only during the reception phase of the MRI signal acquisition. Following fabrication, the performance (SNR, image quality) of the metamaterials will be validated at both 1.5T and 3.0T MRI platforms using configurations specifically optimized towards spine imaging. The application of metamaterials in MRI has the potential to be rapidly translated towards the clinic, offering marked enhancements in SNR, image resolution, and scan efficiency, thereby enabling an evolution of the utility of this powerful diagnostic tool.
项目摘要 本文中的提议寻求使用超材料来增强磁共振成像(MRI),以便 改善信噪比(SNR)。MRI代表了现有诊断工具的基石, 现代医疗一直在不断地推动MRI系统的静磁场的增加 在过去的二十年中,为了提高SNR,这可以转化为改善的图像质量, 分辨率或减少扫描时间。然而,日益强大的磁场的发展引起了 几个权衡,包括财务成本、安全问题和大量图像伪影等。 为了改善MRI中的总体SNR,还开发了替代方法,包括 先进的射频线圈技术的开发以及钆基造影剂的使用, 这是临床上的常规应用。最近,早期的努力,对超材料的应用, 据报道,MRI能够通过其相互作用的能力来提高SNR和效率。 电磁辐射的新方式。虽然前景看好,但将MRI应用于MRI的报告仍在继续 不切实际并且不能实现这些独特材料的全部潜力。在这项工作中,使用超材料, 将得到更充分的发展,允许对MRI中的RF电磁场进行工程控制。 最终,这种方法提供了在不增加静态磁场的情况下显著提高SNR的潜力。 MRI系统的领域。在这项工作中,将开发和优化具有金属螺旋的超材料 可在1.5T和3.0T MRI平台上运行。此外,可调谐超材料的基础上, 将设计一种非线性材料的集成,仅在发射过程中产生射频增强的能力。 MRI信号采集的接收阶段。在制造之后,性能(SNR,图像质量) 超材料将在1.5T和3.0T MRI平台上使用特定配置进行验证 优化了脊柱成像。超材料在磁共振成像中的应用具有迅速发展的潜力 转化为临床,提供SNR、图像分辨率和扫描效率的显著增强, 从而使这种强大的诊断工具的效用得以发展。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(1)
Computational-Design Enabled Wearable and Tunable Metamaterials via Freeform Auxetics for Magnetic Resonance Imaging.
  • DOI:
    10.1002/advs.202400261
  • 发表时间:
    2024-04
  • 期刊:
  • 影响因子:
    15.1
  • 作者:
    Keyin Wu;Xia Zhu;Thomas G. Bifano;Stephan W. Anderson;Xin Zhang
  • 通讯作者:
    Keyin Wu;Xia Zhu;Thomas G. Bifano;Stephan W. Anderson;Xin Zhang
Auxetics-Inspired Tunable Metamaterials for Magnetic Resonance Imaging.
磁性共振成像的辅助启发式可调节材料。
Nonreciprocal Magnetic Coupling Using Nonlinear Meta-Atoms.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Stephan William Anderson其他文献

Stephan William Anderson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

ADVANCED DEVELOPMENT OF LQ A LIPOSOME-BASED SAPONIN-CONTAINING ADJUVANT FOR USE IN PANSARBECOVIRUS VACCINES
用于 Pansarbecovirus 疫苗的 LQ A 脂质体含皂苷佐剂的先进开发
  • 批准号:
    10935820
  • 财政年份:
    2023
  • 资助金额:
    $ 24.75万
  • 项目类别:
ADVANCED DEVELOPMENT OF BBT-059 AS A RADIATION MEDICAL COUNTERMEASURE FOR DOSING UP TO 48H POST EXPOSURE"
BBT-059 的先进开发,作为辐射医学对策,可在暴露后 48 小时内进行给药”
  • 批准号:
    10932514
  • 财政年份:
    2023
  • 资助金额:
    $ 24.75万
  • 项目类别:
Advanced Development of a Combined Shigella-ETEC Vaccine
志贺氏菌-ETEC 联合疫苗的先进开发
  • 批准号:
    10704845
  • 财政年份:
    2023
  • 资助金额:
    $ 24.75万
  • 项目类别:
Advanced development of composite gene delivery and CAR engineering systems
复合基因递送和CAR工程系统的先进开发
  • 批准号:
    10709085
  • 财政年份:
    2023
  • 资助金额:
    $ 24.75万
  • 项目类别:
Advanced Development of Gemini-DHAP
Gemini-DHAP的高级开发
  • 批准号:
    10760050
  • 财政年份:
    2023
  • 资助金额:
    $ 24.75万
  • 项目类别:
Advanced development and validation of an in vitro platform to phenotype brain metastatic tumor cells using artificial intelligence
使用人工智能对脑转移肿瘤细胞进行表型分析的体外平台的高级开发和验证
  • 批准号:
    10409385
  • 财政年份:
    2022
  • 资助金额:
    $ 24.75万
  • 项目类别:
ADVANCED DEVELOPMENT OF A VACCINE FOR PANDEMIC AND PRE-EMERGENT CORONAVIRUSES
针对大流行和突发冠状病毒的疫苗的高级开发
  • 批准号:
    10710595
  • 财政年份:
    2022
  • 资助金额:
    $ 24.75万
  • 项目类别:
Advanced development and validation of an in vitro platform to phenotype brain metastatic tumor cells using artificial intelligence
使用人工智能对脑转移肿瘤细胞进行表型分析的体外平台的高级开发和验证
  • 批准号:
    10630975
  • 财政年份:
    2022
  • 资助金额:
    $ 24.75万
  • 项目类别:
ADVANCED DEVELOPMENT OF A VACCINE CANDIDATE FOR STAPHYLOCOCCUS AUREUS INFECTION
金黄色葡萄球菌感染候选疫苗的高级开发
  • 批准号:
    10710588
  • 财政年份:
    2022
  • 资助金额:
    $ 24.75万
  • 项目类别:
ADVANCED DEVELOPMENT OF A VACCINE FOR PANDEMIC AND PRE-EMERGENT CORONAVIRUSES
针对大流行和突发冠状病毒的疫苗的高级开发
  • 批准号:
    10788051
  • 财政年份:
    2022
  • 资助金额:
    $ 24.75万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了