Modeling and Validation for Tackling Risk Prediction with Competing Risks by Integrating Multiple Longitudinal Biomarkers
通过整合多个纵向生物标志物来解决具有竞争风险的风险预测的建模和验证
基本信息
- 批准号:9922892
- 负责人:
- 金额:$ 35.04万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-06-19 至 2022-04-30
- 项目状态:已结题
- 来源:
- 关键词:Acute Liver FailureBiological MarkersCessation of lifeChildChildhoodClinicalClinical ResearchCommunitiesComplexComputer softwareCritical IllnessDataDatabasesDecision MakingDependenceDerivation procedureDevelopmentDiseaseEnsureEquine muleEventFrequenciesFutureGoalsHeterogeneityIncidenceJointsLifeMethodsModelingOperative Surgical ProceduresOrgan failureOutcomePatientsPerformancePrediction of Response to TherapyProbabilityProceduresRegistriesResearchRiskRisk FactorsSchemeSelection BiasStatistical MethodsSyndromeTechniquesTestingTimeTransplantationTweensUnited StatesValidationWorkbaseinterestliver functionliver transplantationmortalitymortality risknoveloutcome forecastpatient subsetspredictive modelingprognostic valuepublic health relevancesimulationtooluser friendly softwareuser-friendlyweb interface
项目摘要
ABSTRACT/PROJECT SUMMARY
Surgical treatments such as transplantation often pose considerable analytic challenges to risk prediction
for mortality. For example, disease prognosis and treatment decisions in pediatric acute liver failure (PALF) calls
for a reliable tool to predict mortality risk. However, the development of this prediction tool is hampered by the
high frequency of liver transplantation (LTx), the occurrence of which modifies the disease course of the patient
and dependently censors the death event of interest. Existing competing risks methods are not well suited to
risk prediction for PALF. Recognizing the substantial prognostic value in multiple longitudinal biomarkers as well
as baseline covariates, we aim to tackle risk prediction in the presence of treatment-induced competing risks by
developing, implementing and applying sensible and computationally feasible modeling, validation and inference
procedures. In this project, (Aim 1) the team proposes a modeling framework that tackles the dependence be-
tween death and LTx through aggregating information from multiple longitudinal and baseline covariates. When
compared to existing methods, the proposed modeling strategy can integrate information from more longitudinal
biomarkers to better capture patients' dynamic disease status. Next, (Aim 2) we propose a comprehensive set
of validation procedures to evaluate prediction performance in the presence of competing risks. The methods
assess prediction performances in both cumulative incidence prediction and marginal probability prediction to
ascertain and enhance prediction performance from all angles. We also develop formal testing procedures
to detect potential predictive heterogeneity among different subtypes of patients. Moreover, we propose (Aim
3) statistical procedures to examine LTx-benefit under a causal inference framework, accommodating subject-
specific benefit to inform personalized LTx decisions. All statistical methods will be rigorously justified through
extensive simulation studies, sensitivity analysis and theoretical derivations, to ensure their theoretical rigor and
practical usefulness. The methods will be systematically applied to a recent PALF registry database. The final
prediction tool will be disseminated to practitioners through a user-friendly web-interface (Aim 4), to facilitate
PALF prediction and dynamic prediction. We anticipate that our methods will be broadly applicable to other
clinical studies and will develop R packages for the broader research community.
1
摘要/项目摘要
移植等手术治疗通常对风险预测提出相当大的分析挑战
为了死亡率。例如,儿科急性肝衰竭 (PALF) 呼叫的疾病预后和治疗决策
寻找预测死亡风险的可靠工具。然而,该预测工具的发展受到以下因素的阻碍:
高频率的肝移植(LTx),其发生改变了患者的病程
并独立审查感兴趣的死亡事件。现有的竞争风险方法不太适合
PALF 的风险预测。认识到多个纵向生物标志物的重要预后价值
作为基线协变量,我们的目标是在存在治疗引起的竞争风险的情况下解决风险预测问题
开发、实施和应用合理且计算上可行的建模、验证和推理
程序。在这个项目中,(目标 1)团队提出了一个建模框架来解决依赖关系:
通过聚合多个纵向和基线协变量的信息来区分死亡和 LTx。什么时候
与现有方法相比,所提出的建模策略可以整合来自更纵向的信息
生物标志物可以更好地捕捉患者的动态疾病状态。接下来,(目标 2)我们提出一套全面的
在存在竞争风险的情况下评估预测性能的验证程序。方法
评估累积发生率预测和边际概率预测的预测性能
从各个角度确定并提高预测性能。我们还制定正式的测试程序
检测不同亚型患者之间潜在的预测异质性。此外,我们建议(目标
3) 在因果推理框架下检验 LTx 效益的统计程序,适应受试者
为个性化 LTx 决策提供信息的具体好处。所有统计方法都将通过严格论证
广泛的模拟研究、敏感性分析和理论推导,以确保其理论的严谨性和
实际用处。这些方法将系统地应用于最近的 PALF 注册数据库。最终的
预测工具将通过用户友好的网络界面传播给从业者(目标 4),以促进
PALF预测和动态预测。我们预计我们的方法将广泛适用于其他领域
临床研究并将为更广泛的研究社区开发 R 包。
1
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ruosha Li其他文献
Ruosha Li的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ruosha Li', 18)}}的其他基金
Statistical methods for regression modeling of global percentile outcome in neurological diseases
神经系统疾病全球百分位数结果回归模型的统计方法
- 批准号:
9893039 - 财政年份:2019
- 资助金额:
$ 35.04万 - 项目类别:
相似海外基金
MRI and Biological Markers of Acute E-Cigarette Exposure in Smokers and Vapers
吸烟者和电子烟使用者急性电子烟暴露的 MRI 和生物标志物
- 批准号:
10490338 - 财政年份:2021
- 资助金额:
$ 35.04万 - 项目类别:
MRI and Biological Markers of Acute E-Cigarette Exposure in Smokers and Vapers
吸烟者和电子烟使用者急性电子烟暴露的 MRI 和生物标志物
- 批准号:
10353104 - 财政年份:2021
- 资助金额:
$ 35.04万 - 项目类别:
Investigating pollution dynamics of swimming pool waters by means of chemical and biological markers
利用化学和生物标记物研究游泳池水体的污染动态
- 批准号:
21K04320 - 财政年份:2021
- 资助金额:
$ 35.04万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
MRI and Biological Markers of Acute E-Cigarette Exposure in Smokers and Vapers
吸烟者和电子烟使用者急性电子烟暴露的 MRI 和生物标志物
- 批准号:
10688286 - 财政年份:2021
- 资助金额:
$ 35.04万 - 项目类别:
Novel biological markers for immunotherapy and comprehensive genetic analysis in thymic carcinoma
用于胸腺癌免疫治疗和综合遗传分析的新型生物标志物
- 批准号:
20K17755 - 财政年份:2020
- 资助金额:
$ 35.04万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Examination of Biological Markers Associated with Neurobehavioral and Neuropsychological Outcomes in Military Veterans with a History of Traumatic Brain Injury
与有脑外伤史的退伍军人的神经行为和神经心理结果相关的生物标志物的检查
- 批准号:
10578649 - 财政年份:2019
- 资助金额:
$ 35.04万 - 项目类别:
Examination of Biological Markers Associated with Neurobehavioral and Neuropsychological Outcomes in Military Veterans with a History of Traumatic Brain Injury
与有脑外伤史的退伍军人的神经行为和神经心理结果相关的生物标志物的检查
- 批准号:
10295141 - 财政年份:2019
- 资助金额:
$ 35.04万 - 项目类别:
Examination of Biological Markers Associated with Neurobehavioral and Neuropsychological Outcomes in Military Veterans with a History of Traumatic Brain Injury
与有脑外伤史的退伍军人的神经行为和神经心理结果相关的生物标志物的检查
- 批准号:
10041708 - 财政年份:2019
- 资助金额:
$ 35.04万 - 项目类别:
Examination of Biological Markers Associated with Neurobehavioral and Neuropsychological Outcomes in Military Veterans with a History of Traumatic Brain Injury
与有脑外伤史的退伍军人的神经行为和神经心理结果相关的生物标志物的检查
- 批准号:
9776149 - 财政年份:2019
- 资助金额:
$ 35.04万 - 项目类别:
Combining biological and non-biological markers to develop a model predictive of treatment response for individuals with depression
结合生物和非生物标志物来开发预测抑郁症患者治疗反应的模型
- 批准号:
2063934 - 财政年份:2018
- 资助金额:
$ 35.04万 - 项目类别:
Studentship














{{item.name}}会员




