Correcting Dose Calculation Errors in Radiation Oncology

纠正放射肿瘤学中的剂量计算错误

基本信息

  • 批准号:
    9923448
  • 负责人:
  • 金额:
    $ 14.96万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-05-01 至 2021-04-30
  • 项目状态:
    已结题

项目摘要

Identifying and resolving dose errors in radiation oncology Radiation therapy is the standard of care for the treatment of many cancers. To avoid unnecessary recurrences or toxicity, the correct dose must be delivered to the tumor within ±5% of what is prescribed. The radiation dose to the patient is determined with a treatment planning computer calculation, the accuracy of which depends strongly on the input parameters used by the individual clinic to describe their radiation fields. Audits of centers participating in national radiation therapy clinical trials have found that that 18% of audited cases in the United States do not deliver the radiation dose within ±7% of the intended dose. One possible cause for these errors is the inaccurate characterization of the radiation field in the institution’s computational model. This project will develop tools that can identify when this important cause of dose errors is relevant, identify which parameters are most important for the accurate calculation of radiation dose, and then directly interact with those hospitals with identified problems to resolve those errors. This advances our long term goal of improving survival and decreasing normal tissue toxicity in radiation oncology by ensuring accurate dose delivery. Our hypothesis is that a linear accelerator model-specific computational system can identify and resolve 50% of treatment errors in radiation oncology (those showing >5% error), which would be a substantial step towards improved quality. Specific Aim 1 will develop the infrastructure to identify computational errors in radiation therapy dose calculations using reference radiation beam characteristics. It will then test the performance of hundreds of institutions in calculating radiotherapy doses. Specific Aim 2 will determine which basic radiotherapy parameters are most important for accurate dose calculation under clinical conditions. Specific Aim 3 will develop infrastructure to interact with institutions where computational errors have been identified. We will work with the institution to improve their dose calculation models, and verify that their new models are more accurate at calculating dose. Because the calculation model is used to determine the dose to all patients, this improvement will benefit all patients treated at that institution.
放射肿瘤学中剂量误差的识别与解决 放射治疗是许多癌症治疗的标准治疗方法。以避免不必要的 复发或毒性,正确的剂量必须在±5%的范围内给予肿瘤 开了处方。通过治疗计划计算机来确定对患者的辐射剂量 计算,其准确性在很大程度上取决于 个别诊所描述他们的辐射场。对国家参与中心的审计 放射治疗临床试验发现,美国18%的审计病例确实如此 辐射剂量未达到预期剂量的±7%。造成这些问题的一个可能原因 误差是机构计算中对辐射场的不准确描述 模特。该项目将开发工具,可以确定何时这一重要原因的剂量误差 是相关的,确定哪些参数对于准确计算辐射最重要 剂量,然后直接与发现问题的医院互动,以解决这些问题 错误。这推进了我们提高存活率和减少正常组织的长期目标 通过确保准确的剂量传递,确保放射肿瘤学中的毒性。我们的假设是一个线性的 加速器型号特定的计算系统可以识别和解决50%的治疗错误 在放射肿瘤学方面(误差为5%),这将是迈向 提高了质量。具体目标1将开发基础设施,以识别计算错误 利用参考辐射束特性计算放射治疗剂量。然后它将测试 数百家机构在计算放射治疗剂量方面的表现。特定目标2将 确定哪些基本放射治疗参数对于准确的剂量计算最为重要 在临床条件下。具体目标3将发展与机构互动的基础设施 其中识别出了计算误差。我们将与该机构合作,改善他们的 剂量计算模型,并验证了他们的新模型在计算剂量方面更准确。 由于计算模型用于确定所有患者的剂量,因此这一改进将 使在该机构接受治疗的所有患者受益。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Stephen F Kry其他文献

Stephen F Kry的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Stephen F Kry', 18)}}的其他基金

Correcting Dose Calculation Errors in Radiation Oncology
纠正放射肿瘤学中的剂量计算错误
  • 批准号:
    9282227
  • 财政年份:
    2017
  • 资助金额:
    $ 14.96万
  • 项目类别:

相似海外基金

A study for cross borders Indonesian nurses and care workers: Case of Japan-Indonesia Economic Partnership Agreement
针对跨境印度尼西亚护士和护理人员的研究:日本-印度尼西亚经济伙伴关系协定的案例
  • 批准号:
    22KJ0334
  • 财政年份:
    2023
  • 资助金额:
    $ 14.96万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Challenges of the Paris Agreement Exposed by the Energy Shift by External Factors: The Case of Renewable Energy Policies in Japan, the U.S., and the EU
外部因素导致的能源转移对《巴黎协定》的挑战:以日本、美国和欧盟的可再生能源政策为例
  • 批准号:
    23H00770
  • 财政年份:
    2023
  • 资助金额:
    $ 14.96万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
NSF-NOAA Interagency Agreement (IAA) for the Global Oscillations Network Group (GONG)
NSF-NOAA 全球振荡网络组 (GONG) 机构间协议 (IAA)
  • 批准号:
    2410236
  • 财政年份:
    2023
  • 资助金额:
    $ 14.96万
  • 项目类别:
    Cooperative Agreement
Conditions for U.S. Agreement on the Closure of Contested Overseas Bases: Relations of Threat, Alliance and Base Alternatives
美国关于关闭有争议的海外基地协议的条件:威胁、联盟和基地替代方案的关系
  • 批准号:
    23K18762
  • 财政年份:
    2023
  • 资助金额:
    $ 14.96万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
MSI Smart Manufacturing Data Hub – Open Calls Grant Funding Agreement
MSI 智能制造数据中心 – 公开征集赠款资助协议
  • 批准号:
    900240
  • 财政年份:
    2023
  • 资助金额:
    $ 14.96万
  • 项目类别:
    Collaborative R&D
Continuation of Cooperative Agreement between U.S. Food and Drug Administration and S.C. Department of Health and Environmental Control (DHEC) for MFRPS Maintenance.
美国食品和药物管理局与南卡罗来纳州健康与环境控制部 (DHEC) 继续签订 MFRPS 维护合作协议。
  • 批准号:
    10829529
  • 财政年份:
    2023
  • 资助金额:
    $ 14.96万
  • 项目类别:
National Ecological Observatory Network Governing Cooperative Agreement
国家生态观测站网络治理合作协议
  • 批准号:
    2346114
  • 财政年份:
    2023
  • 资助金额:
    $ 14.96万
  • 项目类别:
    Cooperative Agreement
The Kansas Department of Agriculture's Flexible Funding Model Cooperative Agreement for MFRPS Maintenance, FPTF, and Special Project.
堪萨斯州农业部针对 MFRPS 维护、FPTF 和特别项目的灵活资助模式合作协议。
  • 批准号:
    10828588
  • 财政年份:
    2023
  • 资助金额:
    $ 14.96万
  • 项目类别:
Robust approaches for the analysis of agreement between clinical measurements: development of guidance and software tools for researchers
分析临床测量之间一致性的稳健方法:为研究人员开发指南和软件工具
  • 批准号:
    MR/X029301/1
  • 财政年份:
    2023
  • 资助金额:
    $ 14.96万
  • 项目类别:
    Research Grant
Doctoral Dissertation Research: Linguistic transfer in a contact variety of Spanish: Gender agreement production and attitudes
博士论文研究:西班牙语接触变体中的语言迁移:性别协议的产生和态度
  • 批准号:
    2234506
  • 财政年份:
    2023
  • 资助金额:
    $ 14.96万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了