Prediction of the Structure of Therapeutic Antibodies with their Antigens

治疗性抗体及其抗原结构的预测

基本信息

  • 批准号:
    9923648
  • 负责人:
  • 金额:
    $ 34.24万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2006
  • 资助国家:
    美国
  • 起止时间:
    2006-09-01 至 2022-04-30
  • 项目状态:
    已结题

项目摘要

Prediction of the Structure of Therapeutic Antibodies with their Antigens PROJECT SUMMARY Antibodies play a critical role for recognition of foreign intruders. Due to their high affinity and specificity, they have been exploited as therapeutic molecules and biotechnological components for sensing and assembly. Recent high-throughput sequencing and nanofluidics technologies have elucidated large sets (103–104) of naïve and antigen-exposed antibody sequences, and it is now possible to determine a complete set of viruses that an individual has encountered based on one’s antibodies. In addition to their biological, medical, and technological importance, the extensive knowledge about antibodies makes them an ideal model system for studying protein binding and recognition. A reliable toolkit to study protein binding and recognition is the missing link to fully unlock the bountiful information in antibody and antigen repertoires. Prior work demonstrated success in predicting antibody structures, and this proposal focuses on the docking problem. While docking algorithms are reliable for local searches and small conformational changes, significant challenges remain in searching large antigens to identify epitopes and in determining the correct binding orientation when there is backbone flexibility or uncertainty in the homology-modeled starting structures. Accounting for binding-induced backbone conformational changes remains the central difficulty in the protein–protein docking field, primarily due to sampling limitations. An additional challenge is that many viral coat and bacterial proteins are glycosylated. Glycans are well hydrated and can be flexible; these modifications are typically ignored entirely by docking algorithms. The long-term goal of this research is the accurate prediction of structures of antibodies and antibody–antigen complexes such that they are useful to decode biological mechanisms and engineer improved therapeutics. Thus, the first two aims of the current project are to (1) develop fast, aggressive, flexible backbone docking approaches, and (2) extend docking to include glycosylated antigens. Finally, the third aim will be to (3) apply antibody modeling and docking to determine biomarkers and therapeutics for celiac disease and pulmonary hypertension.
治疗性抗体结构及其抗原的预测 项目概要 抗体对于识别外来入侵者起着至关重要的作用。由于其高亲和力和特异性,它们 已被用作治疗分子和用于传感和组装的生物技术组件。 最近的高通量测序和纳米流体技术已经阐明了大量 (103–104) 天然和抗原暴露的抗体序列,现在可以确定一套完整的病毒 一个人根据自己的抗体遇到过的情况。除了生物学、医学和 技术重要性,关于抗体的广泛知识使它们成为理想的模型系统 研究蛋白质结合和识别。 研究蛋白质结合和识别的可靠工具包是充分释放丰富蛋白质的缺失环节 抗体和抗原库中的信息。先前的工作证明在预测抗体方面取得了成功 结构,该提案重点关注对接问题。虽然对接算法对于本地来说是可靠的 搜索和小的构象变化,在寻找大抗原以 识别表位并在存在骨架灵活性或确定正确的结合方向时 同源建模起始结构的不确定性。考虑结合引起的骨干 构象变化仍然是蛋白质-蛋白质对接领域的中心难点,主要是由于 抽样限制。另一个挑战是许多病毒外壳和细菌蛋白都是糖基化的。 聚糖具有良好的水合性并且具有柔韧性;这些修改通常会被对接完全忽略 算法。 这项研究的长期目标是准确预测抗体和抗体-抗原的结构 复合物,使其可用于解码生物机制和设计改进的治疗方法。 因此,当前项目的前两个目标是(1)开发快速、积极、灵活的骨干对接 方法,以及(2)扩展对接以包括糖基化抗原。最后,第三个目标是(3)申请 抗体建模和对接以确定乳糜泻和肺部疾病的生物标志物和治疗方法 高血压。

项目成果

期刊论文数量(34)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Allosteric communication occurs via networks of tertiary and quaternary motions in proteins.
  • DOI:
    10.1371/journal.pcbi.1000293
  • 发表时间:
    2009-02
  • 期刊:
  • 影响因子:
    4.3
  • 作者:
    Daily MD;Gray JJ
  • 通讯作者:
    Gray JJ
Comparison of NMR and crystal structures of membrane proteins and computational refinement to improve model quality.
  • DOI:
    10.1002/prot.25402
  • 发表时间:
    2018-01
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Koehler Leman J;D'Avino AR;Bhatnagar Y;Gray JJ
  • 通讯作者:
    Gray JJ
Structure-based design of supercharged, highly thermoresistant antibodies.
  • DOI:
    10.1016/j.chembiol.2012.01.018
  • 发表时间:
    2012-04-20
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Miklos AE;Kluwe C;Der BS;Pai S;Sircar A;Hughes RA;Berrondo M;Xu J;Codrea V;Buckley PE;Calm AM;Welsh HS;Warner CR;Zacharko MA;Carney JP;Gray JJ;Georgiou G;Kuhlman B;Ellington AD
  • 通讯作者:
    Ellington AD
Development and Evaluation of GlycanDock: A Protein-Glycoligand Docking Refinement Algorithm in Rosetta.
  • DOI:
    10.1021/acs.jpcb.1c00910
  • 发表时间:
    2021-06-16
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Nance ML;Labonte JW;Adolf-Bryfogle J;Gray JJ
  • 通讯作者:
    Gray JJ
Analysis and modeling of the variable region of camelid single-domain antibodies.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

JEFFREY J GRAY其他文献

JEFFREY J GRAY的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('JEFFREY J GRAY', 18)}}的其他基金

Prediction of the Structures of Protein Complexes
蛋白质复合物结构的预测
  • 批准号:
    10206954
  • 财政年份:
    2021
  • 资助金额:
    $ 34.24万
  • 项目类别:
Prediction of the Structures of Protein Complexes
蛋白质复合物结构的预测
  • 批准号:
    10407529
  • 财政年份:
    2021
  • 资助金额:
    $ 34.24万
  • 项目类别:
Prediction of the Structures of Protein Complexes
蛋白质复合物结构的预测
  • 批准号:
    10693822
  • 财政年份:
    2021
  • 资助金额:
    $ 34.24万
  • 项目类别:
Glycomutagenesis Tools for Structure-Based Prediction and Design of Glycosyl Transfer
用于基于结构的糖基转移预测和设计的糖突变工具
  • 批准号:
    9897664
  • 财政年份:
    2018
  • 资助金额:
    $ 34.24万
  • 项目类别:
Prediction of Structure of Therapeutic Antibodies with their Antigens
治疗性抗体结构及其抗原的预测
  • 批准号:
    8731999
  • 财政年份:
    2013
  • 资助金额:
    $ 34.24万
  • 项目类别:
Prediction of the Structure of Therapeutic Antibodies with their Antigens
治疗性抗体结构及其抗原的预测
  • 批准号:
    7487309
  • 财政年份:
    2006
  • 资助金额:
    $ 34.24万
  • 项目类别:
Prediction of the Structure of Therapeutic Antibodies with their Antigens
治疗性抗体结构及其抗原的预测
  • 批准号:
    8546392
  • 财政年份:
    2006
  • 资助金额:
    $ 34.24万
  • 项目类别:
Prediction of the Structure of Therapeutic Antibodies with their Antigens
治疗性抗体结构及其抗原的预测
  • 批准号:
    7680247
  • 财政年份:
    2006
  • 资助金额:
    $ 34.24万
  • 项目类别:
Prediction of the Structure of Therapeutic Antibodies with their Antigens
治疗性抗体结构及其抗原的预测
  • 批准号:
    7132766
  • 财政年份:
    2006
  • 资助金额:
    $ 34.24万
  • 项目类别:
Prediction of the Structure of Therapeutic Antibodies with their Antigens
治疗性抗体结构及其抗原的预测
  • 批准号:
    7279806
  • 财政年份:
    2006
  • 资助金额:
    $ 34.24万
  • 项目类别:

相似海外基金

Construction of affinity sensors using high-speed oscillation of nanomaterials
利用纳米材料高速振荡构建亲和传感器
  • 批准号:
    23H01982
  • 财政年份:
    2023
  • 资助金额:
    $ 34.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Affinity evaluation for development of polymer nanocomposites with high thermal conductivity and interfacial molecular design
高导热率聚合物纳米复合材料开发和界面分子设计的亲和力评估
  • 批准号:
    23KJ0116
  • 财政年份:
    2023
  • 资助金额:
    $ 34.24万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Development of High-Affinity and Selective Ligands as a Pharmacological Tool for the Dopamine D4 Receptor (D4R) Subtype Variants
开发高亲和力和选择性配体作为多巴胺 D4 受体 (D4R) 亚型变体的药理学工具
  • 批准号:
    10682794
  • 财政年份:
    2023
  • 资助金额:
    $ 34.24万
  • 项目类别:
Platform for the High Throughput Generation and Validation of Affinity Reagents
用于高通量生成和亲和试剂验证的平台
  • 批准号:
    10598276
  • 财政年份:
    2023
  • 资助金额:
    $ 34.24万
  • 项目类别:
Collaborative Research: DESIGN: Co-creation of affinity groups to facilitate diverse & inclusive ornithological societies
合作研究:设计:共同创建亲和团体以促进多元化
  • 批准号:
    2233343
  • 财政年份:
    2023
  • 资助金额:
    $ 34.24万
  • 项目类别:
    Standard Grant
Collaborative Research: DESIGN: Co-creation of affinity groups to facilitate diverse & inclusive ornithological societies
合作研究:设计:共同创建亲和团体以促进多元化
  • 批准号:
    2233342
  • 财政年份:
    2023
  • 资助金额:
    $ 34.24万
  • 项目类别:
    Standard Grant
Molecular mechanisms underlying high-affinity and isotype switched antibody responses
高亲和力和同种型转换抗体反应的分子机制
  • 批准号:
    479363
  • 财政年份:
    2023
  • 资助金额:
    $ 34.24万
  • 项目类别:
    Operating Grants
Deconstructed T cell antigen recognition: Separation of affinity from bond lifetime
解构 T 细胞抗原识别:亲和力与键寿命的分离
  • 批准号:
    10681989
  • 财政年份:
    2023
  • 资助金额:
    $ 34.24万
  • 项目类别:
CAREER: Engineered Affinity-Based Biomaterials for Harnessing the Stem Cell Secretome
职业:基于亲和力的工程生物材料用于利用干细胞分泌组
  • 批准号:
    2237240
  • 财政年份:
    2023
  • 资助金额:
    $ 34.24万
  • 项目类别:
    Continuing Grant
ADVANCE Partnership: Leveraging Intersectionality and Engineering Affinity groups in Industrial Engineering and Operations Research (LINEAGE)
ADVANCE 合作伙伴关系:利用工业工程和运筹学 (LINEAGE) 领域的交叉性和工程亲和力团体
  • 批准号:
    2305592
  • 财政年份:
    2023
  • 资助金额:
    $ 34.24万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了