Fundamental Studies of RNA Conformational Thermodynamics
RNA构象热力学基础研究
基本信息
- 批准号:9924580
- 负责人:
- 金额:$ 61.63万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-05-01 至 2023-02-28
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAffinityAtlasesBase PairingBehaviorBiochemicalBiologicalBiological ProcessBiologyBiomedical EngineeringChemicalsCommunicable DiseasesCommunitiesComplexComputer ModelsCuesDNADataDevelopmentDimensionsElementsEngineeringFingerprintGene ExpressionGenetic CodeGenetic DiseasesGoalsIndividualLeadLifeLife Cycle StagesLigand BindingMapsMeasurementMechanicsModelingMolecularMolecular ConformationMutationParticipantProbabilityPropertyProteinsRNARNA ConformationRNA SequencesSignal TransductionStructureSystemTestingTherapeutic InterventionThermodynamicsUntranslated RNAVariantalpha helixbaseblindcancer geneticscomputerized toolsconformational conversiondesignexperimental studyhuman diseaseimprovedmodel developmentnew technologypathogenpredictive modelingprotein structurereceptorreconstitutionresponsesynthetic biologytoolviral RNA
项目摘要
Abstract
Non-coding (nc)RNAs are key players in biology and are increasingly recognized as targets to treat
infectious diseases, cancer, and genetic disorders, and as molecular tools for bioengineering and synthetic
biology. Functional and regulatory RNAs undergo conformational transitions in multi-step biochemical cycles,
ligand binding, and signaling. It is important to understand how these RNA structures form and how they
dynamically change in response to cellular and chemical cues because of the biological importance of these
RNAs, because this understanding will provide tools for bio-engineering and may facilitate therapeutic
intervention, and, most fundamentally, because RNA is an essential molecule of life, both present and past.
The thermodynamics of RNA secondary structure formation can be predicted with reasonable accuracy
from nearest neighbor rules, and there have been remarkable advances in determining 3D RNA and
RNA·protein structures. However, we lack a predictive energetic model for RNA tertiary conformational
thermodynamics, which is ultimately required to understand and manipulate RNA form and function in
biological processes. Unlike the energetic additivity of base pair steps for RNA secondary structure energetics,
RNA tertiary structure energetics requires the statistical mechanical modeling of conformational ensembles
and determination of partition functions that delineate the probabilities of forming different conformations.
RNA's molecular properties—hierarchical folding, repeating structural motifs, and sparse tertiary contact
interfaces—render tertiary structure energetics far simpler and more tractable for RNA than for proteins. From
these properties, a Reconstitution Model has been developed that could allow conformational thermodynamics
to be predicted based on conformational ensembles of component structural elements: helices, junctions, and
tertiary contact partners. The central hypothesis of this proposal is that, by characterizing conformational
thermodynamics for the array of component parts, the conformational thermodynamics of any arbitrary RNA
can be determined. The central goals of this proposal are to test and develop this model and to overcome the
vast challenge of determining conformational ensembles for thousands of RNA element. To accomplish this,
`RNA-MaP' will be used—a novel technology that provides millions of thermodynamic measurements and
quantitative `thermodynamic fingerprints' for tens of thousands of RNA helix, junction, and tertiary contact
elements and provides data to obtain conformational ensembles for each element. This project will (1) build an
atlas of conformational thermodynamics for RNA elements; (2) define a roster of conformational ensembles for
these elements; and then (3) use this information within the Reconstitution Model to design and rationally
engineer the conformational and energetic properties of ncRNAs. This project will also provide a freely available
computational tool, RNAMake-ΔG, to model and engineer dynamic RNA tertiary structures, and will provide a
wealth of high-precision thermodynamic data to help guide community-wide model development.
摘要
非编码(NC)RNA是生物学中的关键角色,越来越被认为是治疗的靶点
传染病、癌症和遗传疾病,以及作为生物工程和合成的分子工具
生物学。功能和调控RNA在多步生化循环中经历构象转变,
配基结合和信号传递。重要的是要了解这些RNA结构是如何形成的,以及它们是如何形成的
对细胞和化学信号的动态变化,因为这些信号在生物学上的重要性
RNA,因为这种理解将为生物工程提供工具,并可能促进治疗
干预,最根本的是,因为RNA是生命的一个基本分子,无论是现在还是过去。
RNA二级结构形成的热力学可以合理准确地预测。
根据最近邻规则,在确定3D RNA和
RNA·蛋白质结构。然而,我们缺乏一个预测rna三级构象的能量模型。
热力学,它最终是理解和操纵RNA的形式和功能所必需的
生物过程。与RNA二级结构能量学的碱基对步骤的能量性不同,
RNA三级结构能量学需要构象系综的统计力学模型
以及确定描绘形成不同构象的概率的配分函数。
RNA的分子特性--分层折叠、重复的结构基序和稀疏的三级接触
界面-使RNA的三级结构能量学比蛋白质的更简单和更容易处理。从…
在这些性质的基础上,一个重构模型已经被开发出来,它可以允许构象热力学
根据组成结构元素的构象集成进行预测:螺旋、连接和
第三方联系合作伙伴。这一提议的中心假设是,通过表征构象
组成部分阵列的热力学,任意RNA的构象热力学
可以确定。该提案的中心目标是测试和开发该模型,并克服
确定数千种RNA元素的构象系综是一项巨大的挑战。要做到这一点,
将使用‘RNA-map’-这是一项新技术,它提供数百万热力学测量和
数万个RNA螺旋、连接和三次接触的定量“热力学指纹”
元素,并提供数据以获得每个元素的构象集合。该项目将(1)建立一个
RNA元素的构象热力学图谱;(2)定义了一个构象系综名册
这些要素;然后(3)在重构模型中使用这些信息来合理地设计和
设计ncRNAs的构象和能量特性。该项目还将提供免费提供的
计算工具RNAMake-ΔG,用于建模和设计动态RNA三级结构,并将提供
丰富的高精度热力学数据,帮助指导社区范围的模型开发。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hashim M Al-Hashimi其他文献
Characterizing the relative orientation and dynamics of RNA A-form helices using NMR residual dipolar couplings
利用核磁共振残余偶极耦合来表征 RNA A 型螺旋的相对取向和动力学
- DOI:
10.1038/nprot.2007.221 - 发表时间:
2007-06-14 - 期刊:
- 影响因子:16.000
- 作者:
Maximillian H Bailor;Catherine Musselman;Alexandar L Hansen;Kush Gulati;Dinshaw J Patel;Hashim M Al-Hashimi - 通讯作者:
Hashim M Al-Hashimi
Hashim M Al-Hashimi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hashim M Al-Hashimi', 18)}}的其他基金
Development and application of a quantitive model for HIV-1 transcriptional activation driven by TAR RNA conformational dynamics
TAR RNA构象动力学驱动的HIV-1转录激活定量模型的开发和应用
- 批准号:
10750552 - 财政年份:2023
- 资助金额:
$ 61.63万 - 项目类别:
Fundamental Studies of RNA Conformational Thermodynamics
RNA构象热力学基础研究
- 批准号:
10491480 - 财政年份:2019
- 资助金额:
$ 61.63万 - 项目类别:
Fundamental Studies of RNA Conformational Thermodynamics
RNA构象热力学基础研究
- 批准号:
10281504 - 财政年份:2019
- 资助金额:
$ 61.63万 - 项目类别:
Fundamental Studies of RNA Conformational Thermodynamics
RNA构象热力学基础研究
- 批准号:
10557995 - 财政年份:2019
- 资助金额:
$ 61.63万 - 项目类别:
Fundamental Studies of RNA Conformational Thermodynamics
RNA构象热力学基础研究
- 批准号:
10348772 - 财政年份:2019
- 资助金额:
$ 61.63万 - 项目类别:
Biological Activity of Lead Compounds Targeting HIV-1 TAR RNA
靶向 HIV-1 TAR RNA 的先导化合物的生物活性
- 批准号:
8327894 - 财政年份:2012
- 资助金额:
$ 61.63万 - 项目类别:
Biological Activity of Lead Compounds Targeting HIV-1 TAR RNA
靶向 HIV-1 TAR RNA 的先导化合物的生物活性
- 批准号:
8508181 - 财政年份:2012
- 资助金额:
$ 61.63万 - 项目类别:
Dynamic Structures of Large and Flexible RNAs
大型且灵活的 RNA 的动态结构
- 批准号:
8190761 - 财政年份:2011
- 资助金额:
$ 61.63万 - 项目类别:
相似海外基金
Construction of affinity sensors using high-speed oscillation of nanomaterials
利用纳米材料高速振荡构建亲和传感器
- 批准号:
23H01982 - 财政年份:2023
- 资助金额:
$ 61.63万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Affinity evaluation for development of polymer nanocomposites with high thermal conductivity and interfacial molecular design
高导热率聚合物纳米复合材料开发和界面分子设计的亲和力评估
- 批准号:
23KJ0116 - 财政年份:2023
- 资助金额:
$ 61.63万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Development of High-Affinity and Selective Ligands as a Pharmacological Tool for the Dopamine D4 Receptor (D4R) Subtype Variants
开发高亲和力和选择性配体作为多巴胺 D4 受体 (D4R) 亚型变体的药理学工具
- 批准号:
10682794 - 财政年份:2023
- 资助金额:
$ 61.63万 - 项目类别:
Platform for the High Throughput Generation and Validation of Affinity Reagents
用于高通量生成和亲和试剂验证的平台
- 批准号:
10598276 - 财政年份:2023
- 资助金额:
$ 61.63万 - 项目类别:
Collaborative Research: DESIGN: Co-creation of affinity groups to facilitate diverse & inclusive ornithological societies
合作研究:设计:共同创建亲和团体以促进多元化
- 批准号:
2233343 - 财政年份:2023
- 资助金额:
$ 61.63万 - 项目类别:
Standard Grant
Collaborative Research: DESIGN: Co-creation of affinity groups to facilitate diverse & inclusive ornithological societies
合作研究:设计:共同创建亲和团体以促进多元化
- 批准号:
2233342 - 财政年份:2023
- 资助金额:
$ 61.63万 - 项目类别:
Standard Grant
Molecular mechanisms underlying high-affinity and isotype switched antibody responses
高亲和力和同种型转换抗体反应的分子机制
- 批准号:
479363 - 财政年份:2023
- 资助金额:
$ 61.63万 - 项目类别:
Operating Grants
Deconstructed T cell antigen recognition: Separation of affinity from bond lifetime
解构 T 细胞抗原识别:亲和力与键寿命的分离
- 批准号:
10681989 - 财政年份:2023
- 资助金额:
$ 61.63万 - 项目类别:
CAREER: Engineered Affinity-Based Biomaterials for Harnessing the Stem Cell Secretome
职业:基于亲和力的工程生物材料用于利用干细胞分泌组
- 批准号:
2237240 - 财政年份:2023
- 资助金额:
$ 61.63万 - 项目类别:
Continuing Grant
ADVANCE Partnership: Leveraging Intersectionality and Engineering Affinity groups in Industrial Engineering and Operations Research (LINEAGE)
ADVANCE 合作伙伴关系:利用工业工程和运筹学 (LINEAGE) 领域的交叉性和工程亲和力团体
- 批准号:
2305592 - 财政年份:2023
- 资助金额:
$ 61.63万 - 项目类别:
Continuing Grant