Efficient statistical methods for assessing dementia risk in Parkinson's disease
评估帕金森病痴呆风险的有效统计方法
基本信息
- 批准号:9925847
- 负责人:
- 金额:$ 31.16万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-07-01 至 2024-04-30
- 项目状态:已结题
- 来源:
- 关键词:AgeAlzheimer&aposs DiseaseAmyloid beta-ProteinAnisotropyAnteriorAttentionBiological MarkersBiomedical ResearchBrainBrain imagingCerebrospinal FluidClinicalCognitionCognitiveComputer softwareCorpus striatum structureDataDeteriorationDiffuseDiffusion Magnetic Resonance ImagingDiseaseFutureGrantImpaired cognitionImpairmentInsula of ReilInternal CapsuleLimb structureMagnetic Resonance ImagingMeasurableMeasurementMeasuresMedialMemoryMethodologyMethodsModelingMonitorNeurodegenerative DisordersNeuropsychological TestsOutcomeParietal LobeParkinson DiseaseParkinson&aposs DementiaParticipantPatientsProceduresProcessResearchResourcesRiskSignal TransductionSpinal PunctureStatistical MethodsStructureStructure of genu of corpus callosumTemporal LobeTestingThickTimeWorkbehavioral/social sciencecerebral atrophycingulate gyruscognitive impairment in Parkinson&aposscohortcostdementia riskdesigndopamine transporterfrontal lobegray matterimprovedinnovationinterestlongitudinal designnovelnovel strategiespower analysisprogression markerpublic health researchrate of changeresponsesingle photon emission computed tomographytargeted treatmenttau Proteins
项目摘要
“Efficient statistical methods for assessing dementia risk in Parkinson's disease”
Summary/Abstract:
The proposed R01 grant is in response to PAR-16-260 “Methodology and Measurement in the Behavioral and Social
Sciences (R01)”. Disease-modifying therapies targeting Parkinson's disease (PD) dementia are likely to be most
efficacious before significant cognitive decline has occurred, as has been proposed for Alzheimer's disease (AD). Thus,
cognitive biomarker studies in PD are significant because biomarkers may signal an increased risk of future cognitive
decline prior to measurable impairment on standard neuropsychological testing. Longitudinal design is particularly
desirable because it allows ongoing monitoring of pathophysiological processes associated with cognition and
identification of those biomarkers most sensitive to ongoing or future cognitive decline. A major challenge in longitudinal
biomarker studies is the difficulty in obtaining all biomarker outcomes serially for every participant, due to limitations in
study resources and priorities. Current available statistical procedures such as mixed-effects models ignore missing data,
which results in low efficiency (power) of the analyses in the presence of missing data. Thus, our ability to detect
significant longitudinal changes in biomarkers is limited by the current available statistical methods due to this
inefficiency. This R01 aims to develop more efficient longitudinal methods than the current available methods in the
presence of missing biomarker outcome or covariate data. The new methods will require less biomarker data than current
methods to achieve the same analytic statistical power (efficiency). This will be a significant methodological advance, as
it will reduce future study costs and patient burden without sacrificing power. It has broad applications in PD dementia
and other neurodegenerative diseases such as AD, as well as general biomedical research. We also plan to study
progression of three potential cognitive biomarkers (cerebrospinal fluid [CSF], brain MRIs, and dopamine transporter
[DAT] SPECT imaging) and establish their temporal ordering in relationship to cognitive decline in PD participants in the
Parkinson's Progression Markers Initiative (PPMI) study by applying these new statistical methods. The results will
inform the design of future studies testing possible disease-modifying therapies in treating PD dementia.
“评估帕金森病痴呆风险的有效统计方法”
摘要/摘要:
拟议的 R01 拨款是为了响应 PAR-16-260“行为和社会领域的方法论和测量”
科学 (R01)”。针对帕金森病 (PD) 痴呆症的疾病修饰疗法可能是最重要的
在认知能力显着下降之前就有效,正如针对阿尔茨海默病 (AD) 所提出的那样。因此,
PD 认知生物标志物研究意义重大,因为生物标志物可能表明未来认知风险增加
在标准神经心理学测试出现可测量的损害之前下降。纵向设计特别
理想的,因为它允许持续监测与认知和相关的病理生理过程
识别对当前或未来认知能力下降最敏感的生物标志物。纵向的主要挑战
生物标志物研究的难点在于,由于研究的局限性,连续获得每个参与者的所有生物标志物结果是很困难的。
研究资源和优先事项。当前可用的统计程序(例如混合效应模型)忽略了缺失的数据,
这会导致在存在缺失数据的情况下分析效率(能力)低下。因此,我们的检测能力
由于这一原因,生物标志物的显着纵向变化受到当前可用统计方法的限制
效率低下。该 R01 旨在开发比当前可用方法更有效的纵向方法
存在缺失的生物标志物结果或协变量数据。新方法将比当前方法需要更少的生物标志物数据
实现相同分析统计功效(效率)的方法。这将是方法论上的重大进步,因为
它将在不牺牲力量的情况下减少未来的研究成本和患者负担。它在帕金森病痴呆症中有广泛的应用
和其他神经退行性疾病,如 AD,以及一般生物医学研究。我们也打算学习
三种潜在认知生物标志物(脑脊液 [CSF]、脑 MRI 和多巴胺转运蛋白)的进展
[DAT] SPECT 成像)并建立与 PD 参与者认知能力下降相关的时间顺序
帕金森病进展标记计划 (PPMI) 通过应用这些新的统计方法进行研究。结果将
为未来测试治疗帕金森病痴呆的可能疾病缓解疗法的研究设计提供信息。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Meta-analysis of several epidemic characteristics of COVID-19.
- DOI:10.6339/jds.202007_18(3).0019
- 发表时间:2020-07
- 期刊:
- 影响因子:0
- 作者:Zhang P;Wang T;Xie SX
- 通讯作者:Xie SX
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
DANIEL WEINTRAUB其他文献
DANIEL WEINTRAUB的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('DANIEL WEINTRAUB', 18)}}的其他基金
Efficient statistical methods for assessing dementia risk in Parkinson's disease
评估帕金森病痴呆风险的有效统计方法
- 批准号:
9366254 - 财政年份:2017
- 资助金额:
$ 31.16万 - 项目类别:
DEPRESSION DIAGNOSIS AND TREATMENT IN PARKINSON DISEASE
帕金森病的抑郁症诊断和治疗
- 批准号:
6822007 - 财政年份:2003
- 资助金额:
$ 31.16万 - 项目类别:
DEPRESSION DIAGNOSIS AND TREATMENT IN PARKINSON DISEASE
帕金森病的抑郁症诊断和治疗
- 批准号:
7319636 - 财政年份:2003
- 资助金额:
$ 31.16万 - 项目类别:
DEPRESSION DIAGNOSIS AND TREATMENT IN PARKINSON DISEASE
帕金森病的抑郁症诊断和治疗
- 批准号:
6993568 - 财政年份:2003
- 资助金额:
$ 31.16万 - 项目类别:
DEPRESSION DIAGNOSIS AND TREATMENT IN PARKINSON DISEASE
帕金森病的抑郁症诊断和治疗
- 批准号:
7152842 - 财政年份:2003
- 资助金额:
$ 31.16万 - 项目类别: