Technology for functional study of cells and circuits in large postmortem brains ex vivo
离体大型死后大脑细胞和电路功能研究技术
基本信息
- 批准号:9928247
- 负责人:
- 金额:$ 15.56万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-08-01 至 2021-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmsAnatomyAnimal FeedAnimal ModelAnimalsAreaAutomationAutopsyAxonBiologicalBrainBrain regionCardiovascular systemCell physiologyCellsCellular MorphologyCephalicCerebrumChemicalsCommunitiesComplexCustomDiseaseElectrocorticogramElectrolytesElectrophysiology (science)EngineeringFamily suidaeFood productionFormulationFunctional ImagingFunctional disorderGasesGeneticGlucoseGoalsGrantHarvestHealthHippocampus (Brain)HistologicHistologyHomeostasisHourHumanInvestigationKineticsLabelLeadMaintenanceMammalsMechanicsMental disordersMetabolismMethodologyMicrocirculationModelingMolecularMolecular AnalysisMolecular StructureMonitorNamesNeuronsNeurosciencesNutrientOperative Surgical ProceduresOutputPerfusionPhysiologic pulsePhysiologicalPositron-Emission TomographyPulsatile FlowQuality ControlResearchResearch PersonnelResolutionResuscitationScanningSourceStructureSynapsesSystemTechniquesTechnologyTemperatureTimeTissue ViabilityTissuesTracerTranslationsValidationX-Ray Computed TomographyZoologybasebrain tissuecell typedensityexperimental studyfunctional outcomesimaging capabilitiesimaging modalityimaging studyimprovedin vivomultimodalityneocorticalnervous system disorderneural circuitneurotechnologynew technologynon-geneticnovelnovel strategiespatch clamppreservationpressureprototyperelating to nervous systemrestorationsensortissue culturetooluser-friendlyvector
项目摘要
PROJECT SUMMARY
The mammalian brain is arguably the most complex biological structure. Investigating cellular functions and
mapping neural connections in the brain are critical tasks to better understand the brain in health and disease.
This is particularly challenging in vivo due to the inherent limitations in experimental latitude and simultaneous
access to multiple brain regions within the same animal. These shortcomings hinder multimodal interrogation of
multi-synaptic circuits and mesoscale connectomics. Of particular importance, these experimental inadequacies
grow in proportion to the complexity of the brain and cranial anatomy, impeding translation to larger mammals.
This grant addresses these tasks by optimizing and validating a first-in-class neurotechnology called BrainEx for
the restoration of molecular and cellular functions of the postmortem large mammalian brain under ex vivo,
normothermic conditions. We specifically propose to continue optimizing BrainEx in porcine brains, while
validating the efficacy of the BrainEx system as a new experimental platform for electrophysiological,
connectomic, and imaging studies in the fully isolated, intact, and functional large mammalian brain. There are
four major distinguishing aspects of this application: (1) implementation of novel approaches developed to
restore cerebral macro- and microcirculation and extend cellular viability of the postmortem brain under
normothermic conditions such that researchers can (2) simultaneously trace connections and characterize
cellular function and morphology by chemical and vector-based techniques across myriad brain regions,
including areas inaccessible to in vivo surgical approaches; (3) investigate multisynaptic long-range circuitry and
cortical network electrical activity; and (4) perform functional PET and CT imaging studies in the ex vivo large
mammalian brain. This methodology represents a new tool for more thorough investigation of the structure and
function of complex circuits and the cells within them. Wide distribution of this technology will grant investigators
experimental advantages across species not afforded by tissue culture or in vivo approaches.
项目总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
NENAD SESTAN其他文献
NENAD SESTAN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('NENAD SESTAN', 18)}}的其他基金
Identification of Genetic and Molecular Bases of Derived Phenotypes in Primate Brain Development
灵长类动物大脑发育中衍生表型的遗传和分子基础的鉴定
- 批准号:
10841947 - 财政年份:2023
- 资助金额:
$ 15.56万 - 项目类别:
1/2 Identification and Validation of Expression Quantitative Trait Loci (eQTLs) in discrete cell types across human brain development
1/2 人脑发育过程中离散细胞类型表达数量性状位点 (eQTL) 的识别和验证
- 批准号:
9948364 - 财政年份:2021
- 资助金额:
$ 15.56万 - 项目类别:
1/2 Identification and Validation of Expression Quantitative Trait Loci (eQTLs) in discrete cell types across human brain development
1/2 人脑发育过程中离散细胞类型表达数量性状位点 (eQTL) 的识别和验证
- 批准号:
10335113 - 财政年份:2021
- 资助金额:
$ 15.56万 - 项目类别:
1/2 Identification and Validation of Expression Quantitative Trait Loci (eQTLs) in discrete cell types across human brain development
1/2 人脑发育过程中离散细胞类型表达数量性状位点 (eQTL) 的识别和验证
- 批准号:
10543826 - 财政年份:2021
- 资助金额:
$ 15.56万 - 项目类别:
Identification of Genetic and Molecular Bases of Derived Phenotypes in Primate Brain Development
灵长类动物大脑发育中衍生表型的遗传和分子基础的鉴定
- 批准号:
10437866 - 财政年份:2020
- 资助金额:
$ 15.56万 - 项目类别:
Developmental cell census of human and non-human primate brain
人类和非人类灵长类动物大脑的发育细胞普查
- 批准号:
10088878 - 财政年份:2020
- 资助金额:
$ 15.56万 - 项目类别:
Identification of Genetic and Molecular Bases of Derived Phenotypes in Primate Brain Development
灵长类动物大脑发育中衍生表型的遗传和分子基础的鉴定
- 批准号:
10256054 - 财政年份:2020
- 资助金额:
$ 15.56万 - 项目类别:
Developmental cell census of human and non-human primate brain
人类和非人类灵长类动物大脑的发育细胞普查
- 批准号:
10266105 - 财政年份:2020
- 资助金额:
$ 15.56万 - 项目类别:
1/2 Cell Type and Region-Specific Regulatory Networks in Human Brain Development and Disorders
人脑发育和疾病中的 1/2 细胞类型和区域特异性调节网络
- 批准号:
10377340 - 财政年份:2018
- 资助金额:
$ 15.56万 - 项目类别:
1/2 Cell Type and Region-Specific Regulatory Networks in Human Brain Development and Disorders
人脑发育和疾病中的 1/2 细胞类型和区域特异性调节网络
- 批准号:
9896867 - 财政年份:2018
- 资助金额:
$ 15.56万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 15.56万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 15.56万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 15.56万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 15.56万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 15.56万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 15.56万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 15.56万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 15.56万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 15.56万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 15.56万 - 项目类别:
Continuing Grant














{{item.name}}会员




