Integrated pathogenicity assessment of clinically actionable genetic variants
临床可行的遗传变异的综合致病性评估
基本信息
- 批准号:9976565
- 负责人:
- 金额:$ 69.24万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-24 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:AgeAlgorithmsAmericanBayesian ModelingBayesian PredictionBinding ProteinsBiochemicalCharacteristicsClassificationClinVarClinicalClinical DataClinical assessmentsCodeComplementControl GroupsCouplingCrystallizationDataDatabasesDaughterDevelopmentDiseaseEpidemiologyEtiologyEvaluationFamilyFathersGenesGeneticGenomicsHypertrophic CardiomyopathyIndividualKnowledgeLaboratoriesMalignant NeoplasmsMeasuresMedicalMedical GeneticsMethodsModelingMolecular ConformationMutationParticipantPathogenicityPatientsPatternPenetrancePerformancePhenotypePopulationPositioning AttributePredispositionProtein RegionProteinsRecurrenceRiskRoleScreening procedureSingle Nucleotide PolymorphismSiteStructureSyndromeTrainingTrans-Omics for Precision MedicineVariantVeteransbiobankclinical applicationclinical diagnosticsclinical riskclinically actionablecohortexhaustiongenetic pedigreegenetic varianthealth dataimprovedinsightmedical schoolsnovelpopulation healthprospectiveprotein structuresegregationstandard of carestructured datavariant of unknown significance
项目摘要
Integrated pathogenicity assessment of clinically actionable genetic variants
!
Project Summary/Abstract
Large biobanks such as All of Us and the Million Veteran Project have now collected genetic data from
millions of patients, and other population health studies are expanding rapidly. The interpretation of variants in
clinically actionable disease genes is becoming increasingly common in such projects. The American College
of Medical Genetics and Genomics has recommended that sequence interpretation include a minimum set of
59 genes regardless of the indication for sequencing (ACMG 59). These genes are responsible for a variety of
clinical syndromes and have been extensively studied. However, even in well-studied disease genes, the
majority of variants are only observed in one or two families. which makes it challenging to be sure of their role
in causation of disease. Further, while there may be existing evidence about a variant, it is often inadequate for
interpretation, as many variants in databases were originally identified in small, symptomatic cohorts without
matched control groups, so their associations can suffer from incorrect estimates of significance or effect size,
and a non-trivial fraction are likely to be spurious.
For these reasons, a central challenge in clinical genomics is to interpret variants in clinically actionable
genes that are identified during sequencing. Because the ACMG 59 genes have been studied intensively due
to their clinical applicability, there is a unique abundance of functional and structural data that can be used to
improve predictions. Here, we propose to develop new data that can be leveraged in the clinical assessment of
variants including novel predictions of structural consequences, regional and structurally-informed selective
constraint, and clinical risk from clinical diagnostic and epidemiologic health data. Using these data, we will
develop a Bayesian statistical model to predict the effects of mutations that can complement existing
assessments made by consortia and clinical laboratories.
This will specifically include efforts to intensively improve computational predictions of structural and
functional impact using the extensive scientific and medical knowledge in each of these genes. Next, we
combine that structural and functional insight with large-scale population data. We will measure statistical
aberration of variation for related groups of missense variants, and also identify groups of variant sites which
are enriched in recurrent somatic or germline variation associated with cancer. Finally, we will develop a
Bayesian prediction framework that integrates the full set of variant observations and characteristics to improve
predictions of clinical risk for individual variants, and prospectively measure its performance in a clinical
diagnostic laboratory. !
!
临床上可操作的遗传变异体的综合致病性评估
!
项目总结/摘要
大型生物银行,如我们所有人和百万退伍军人项目,现在已经收集了遗传数据,
数以百万计的患者,以及其他人口健康研究正在迅速扩大。中变体的解释
临床上可操作的疾病基因在这样的项目中变得越来越普遍。美国大学
医学遗传学和基因组学的建议序列解释包括最少一组
59个基因,无论测序适应症如何(ACMG 59)。这些基因负责多种
临床症状,并已被广泛研究。然而,即使在研究充分的疾病基因中,
大多数变异仅在一个或两个家族中观察到。这使得确定他们的角色变得很有挑战性
疾病的起因。此外,虽然可能存在关于变体的现有证据,但它通常不足以用于
解释,因为数据库中的许多变异最初是在小的有症状的队列中发现的,
匹配的对照组,因此它们的关联可能会受到显著性或效应大小的错误估计的影响,
和非平凡分数很可能是假的。
出于这些原因,临床基因组学的一个核心挑战是解释临床上可操作的变异
在测序过程中识别的基因。由于ACMG 59基因已被深入研究,
对于它们的临床适用性,有独特丰富的功能和结构数据可用于
改善预测。在这里,我们建议开发新的数据,可用于临床评估,
变体,包括结构后果的新预测,区域和结构信息选择性
限制和临床诊断和流行病学健康数据的临床风险。利用这些数据,我们将
开发贝叶斯统计模型来预测突变的影响,
联合会和临床实验室进行的评估。
这将特别包括努力深入改进结构和
利用这些基因中的每一个的广泛的科学和医学知识来研究功能影响。接下来我们
联合收割机将结构和功能见解与大规模人口数据相结合。我们将统计
相关错义变体组的变异畸变,并且还鉴定了
富含与癌症相关的复发性体细胞或生殖系变异。最后,我们将开发一个
贝叶斯预测框架集成了全套变量观察和特征以改进
预测个体变异的临床风险,并前瞻性地测量其在临床
诊断实验室!
!
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christopher Cassa其他文献
Christopher Cassa的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Christopher Cassa', 18)}}的其他基金
Integrative computational-experimental approaches to stratify monogenic disease risk
综合计算实验方法对单基因疾病风险进行分层
- 批准号:
10889297 - 财政年份:2023
- 资助金额:
$ 69.24万 - 项目类别:
Urgent Supplement: Correcting genetic disorders using predictable CRISPR/Cas9-induced exon skipping
紧急补充:利用可预测的 CRISPR/Cas9 诱导的外显子跳跃来纠正遗传疾病
- 批准号:
10163567 - 财政年份:2020
- 资助金额:
$ 69.24万 - 项目类别:
Integrated pathogenicity assessment of clinically actionable genetic variants
临床可行的遗传变异的综合致病性评估
- 批准号:
10213798 - 财政年份:2018
- 资助金额:
$ 69.24万 - 项目类别:
Integrated pathogenicity assessment of clinically actionable genetic variants
临床可行的遗传变异的综合致病性评估
- 批准号:
10443630 - 财政年份:2018
- 资助金额:
$ 69.24万 - 项目类别:
Integrated pathogenicity assessment of clinically actionable genetic variants
临床可行的遗传变异的综合致病性评估
- 批准号:
9789922 - 财政年份:2018
- 资助金额:
$ 69.24万 - 项目类别:
Clinical prioritization of reported disease variants in asymptomatic individuals
无症状个体中报告的疾病变异的临床优先顺序
- 批准号:
8692560 - 财政年份:2013
- 资助金额:
$ 69.24万 - 项目类别:
Clinical prioritization of reported disease variants in asymptomatic individuals
无症状个体中报告的疾病变异的临床优先顺序
- 批准号:
9113670 - 财政年份:2013
- 资助金额:
$ 69.24万 - 项目类别:
Clinical prioritization of reported disease variants in asymptomatic individuals
无症状个体中报告的疾病变异的临床优先顺序
- 批准号:
9309017 - 财政年份:2013
- 资助金额:
$ 69.24万 - 项目类别:
Clinical prioritization of reported disease variants in asymptomatic individuals
无症状个体中报告的疾病变异的临床优先顺序
- 批准号:
8487872 - 财政年份:2013
- 资助金额:
$ 69.24万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 69.24万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 69.24万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 69.24万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 69.24万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 69.24万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 69.24万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 69.24万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 69.24万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 69.24万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 69.24万 - 项目类别:
Continuing Grant