The Role of Drosha in the Pathogenesis of Alzheimer's Disease

Drosha 在阿尔茨海默病发病机制中的作用

基本信息

  • 批准号:
    9976598
  • 负责人:
  • 金额:
    $ 47.2万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-08-01 至 2023-06-30
  • 项目状态:
    已结题

项目摘要

Neurons are highly sensitive to changes in their environment, and have developed dynamic adaptive processes to sense and copy with stress caused by such changes. The long-term goal of our research is to understand the mechanisms by which neurons respond to stress. MiRNAs (microRNAs) are a recently discovered class of non-coding small RNAs that are involved in regulating many cellular processes including stress. Dysfunction of miRNAs has been implicated in many pathological processes. MiRNA biogenesis is controlled by several tightly coupled sequential steps governed by multiple protein complexes and subjected to intricate regulation. The entire process is initiated in the nucleus by the conversion of the long primary miRNA transcripts to the hairpin structured precursor miRNA (pre-miRNAs) by the RNase III enzyme Drosha. Whether Drosha itself is a direct regulatory target is unknown. A growing body of data suggests that stress conditions and miRNAs are highly intertwined at several levels. However, signals and pathways directly modulating Drosha under either physiological or pathological stress condition remain to be identified. There are multiple lines of evidence indicating that miRNAs are especially important to the brain function and modulate pathways and key genes relevant to genetic and sporadic AD pathogenesis. Many of these miRNAS are themselves altered in AD. Furthermore, inhibiting miRNA biogenesis by conditionally knocking out Dicer in neurons, which blocks miRNA biogenesis at a step downstream of Drosha, causes mice to develop progressive neurodegeneration and AD-like tau hyperphosphorylation. This offers perhaps the strongest evidence for a potential link between miRNA biogenesis and AD. However, how these findings translate into animal AD models and human disease remains to be tested. Recently, we have revealed that a variety of stress conditions exert a direct and tight control of Drosha. This involves a stress-induced, p38 MAPK dependent phosphorylation and inhibition of Drosha, and loss of Drosha triggers cell death under stress (Molecular Cell in press). In a series of preliminary studies, we have extended this set of key findings to primary cortical neurons and shown that a) stress signals cause p38 MAPK-mediated direct phosphorylation and inhibition of Drosha in neurons; b) Aβ appears to engage this pathway and reduces the level of Drosha in primary cortical neurons; c) increasing Drosha protects neurons from Aβ-induced toxicity; and d) the levels of the nuclear Drosha are significantly reduced in the cortex of a transgenic AD rat and the postmortem AD brains. Together, these highly significant findings support an intriguing hypothesis that Aβ signals via p38 MAPK-Drosha pathway to inhibit miRNA biogenesis and interfere neuronal homeostasis and survival. Loss of Drosha may underlie in part the neurodegenerative process in AD. We propose to use a combination of molecular and cellular methods to assess whether loss of Drosha underlies Aβ-induced toxicity and pathogenesis using cultured primary neurons, a new established rat model of Alzheimer's disease, and human postmortem AD brains.
神经元对环境的变化高度敏感,并形成了动态适应 感知和复制这些变化所造成的压力的过程。我们研究的长期目标是 了解神经元对压力做出反应的机制。MiRNAs(MicroRNAs)是最近出现的一种 发现了一类非编码的小RNA,参与调节许多细胞过程,包括 压力。MiRNAs功能障碍参与了多种病理过程。MiRNA生物发生是 由多个蛋白质复合体支配的几个紧密耦合的顺序步骤控制,并受 错综复杂的监管。整个过程是在细胞核中通过长的初级miRNA的转换而启动的 通过RNaseIII酶DROSHA转录成发夹结构的前体miRNA(前miRNAs)。是否 DROSHA本身是一个直接的监管目标尚不清楚。越来越多的数据表明,压力条件 而miRNAs在几个层面上高度交织在一起。然而,直接调制的信号和通路 DROSHA在生理或病理应激条件下的情况仍有待确定。有多个 一系列证据表明miRNAs对大脑功能和调节通路特别重要 以及与遗传和散发性AD发病相关的关键基因。其中许多miRNAs本身就是 在公元后发生了变化。此外,通过有条件地敲除神经元中的Dester来抑制miRNA的生物生成,这是 在DROSHA下游阻断miRNA的生物生成,导致小鼠发展为进行性 神经退行性变和类AD tau过度磷酸化。这可能提供了最有力的证据证明 MiRNA生物发生与阿尔茨海默病之间的潜在联系。然而,这些发现如何转化为动物AD 模型和人类疾病仍有待测试。最近,我们披露了各种压力 条件对DROSHA施加了直接和严格的控制。这涉及到应激诱导的p38 MAPK依赖 DROSHA的磷酸化和抑制,以及DROSHA的丢失在应激状态下触发细胞死亡(分子细胞 按下)。在一系列初步研究中,我们已经将这组关键发现扩展到初级皮质神经元 结果表明:a)应激信号导致p38MAPK介导的直接磷酸化和DROSHA的抑制 B)β似乎参与了这一通路,并降低了初级皮质神经元中DROSHA的水平;c) 增加DROSHA保护神经元免受β诱导的毒性;以及d)核DROSHA的水平如下 转基因阿尔茨海默病大鼠的大脑皮质和死后阿尔茨海默病大鼠的大脑中的蛋白质显著减少。加在一起,这些 非常有意义的发现支持了一个有趣的假设,即β通过p38MAPK-DROSHA途径传递信号到 抑制miRNA的生物生成,干扰神经元的动态平衡和存活。DROSHA的损失可能是 参与阿尔茨海默病的神经退变过程。我们建议使用分子和细胞的组合 方法用体外培养的方法评估DROSHA的缺失是否是β诱导的毒性和发病机制的基础 初级神经元,一种新建立的阿尔茨海默病大鼠模型,以及人类死后阿尔茨海默病的大脑。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Loss of Drosha underlies dopaminergic neuron toxicity in models of Parkinson's disease.
  • DOI:
    10.1038/s41419-018-0716-5
  • 发表时间:
    2018-06-07
  • 期刊:
  • 影响因子:
    9
  • 作者:
    Wang R;Lu F;Zhu G;Feng D;Nie T;Tao K;Yang S;Lei J;Huang L;Mao Z;Yang Q
  • 通讯作者:
    Yang Q
Mechanisms Underlying Dysregulation of miR-132 in Alzheimer's Disease.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

ZIXU MAO其他文献

ZIXU MAO的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('ZIXU MAO', 18)}}的其他基金

Chloride Homeostasis in Lysosomal Function and Parkinson's Disease
溶酶体功能和帕金森病中的氯稳态
  • 批准号:
    10656542
  • 财政年份:
    2022
  • 资助金额:
    $ 47.2万
  • 项目类别:
Chloride Homeostasis in Lysosomal Function and Parkinson's Disease
溶酶体功能和帕金森病中的氯稳态
  • 批准号:
    10515961
  • 财政年份:
    2022
  • 资助金额:
    $ 47.2万
  • 项目类别:
Dysregulation of Multivesicular Body and Exosome Flux in Alzheimer's Disease
阿尔茨海默病中多泡体和外泌体通量的失调
  • 批准号:
    10213490
  • 财政年份:
    2021
  • 资助金额:
    $ 47.2万
  • 项目类别:
Chaperone-mediated Autophagy and Synaptic Dysfunction in Parkinson's Disease
帕金森病中分子伴侣介导的自噬和突触功能障碍
  • 批准号:
    10248292
  • 财政年份:
    2018
  • 资助金额:
    $ 47.2万
  • 项目类别:
Chaperone-mediated Autophagy and Synaptic Dysfunction in Parkinson's Disease
帕金森病中分子伴侣介导的自噬和突触功能障碍
  • 批准号:
    10427401
  • 财政年份:
    2018
  • 资助金额:
    $ 47.2万
  • 项目类别:
The Role of Drosha in the Pathogenesis of Alzheimer's Disease
Drosha 在阿尔茨海默病发病机制中的作用
  • 批准号:
    9323608
  • 财政年份:
    2016
  • 资助金额:
    $ 47.2万
  • 项目类别:
ER SIGNAL AND CHAPERONE-MEDIATED AUTOPHAGY IN NEURONAL STRESS
神经元应激中的 ER 信号和伴侣介导的自噬
  • 批准号:
    8504281
  • 财政年份:
    2013
  • 资助金额:
    $ 47.2万
  • 项目类别:
ER SIGNAL AND CHAPERONE-MEDIATED AUTOPHAGY IN NEURONAL STRESS
神经元应激中的 ER 信号和伴侣介导的自噬
  • 批准号:
    8811485
  • 财政年份:
    2013
  • 资助金额:
    $ 47.2万
  • 项目类别:
ER SIGNAL AND CHAPERONE-MEDIATED AUTOPHAGY IN NEURONAL STRESS
神经元应激中的 ER 信号和伴侣介导的自噬
  • 批准号:
    9240687
  • 财政年份:
    2013
  • 资助金额:
    $ 47.2万
  • 项目类别:
ER SIGNAL AND CHAPERONE-MEDIATED AUTOPHAGY IN NEURONAL STRESS
神经元应激中的 ER 信号和伴侣介导的自噬
  • 批准号:
    9005884
  • 财政年份:
    2013
  • 资助金额:
    $ 47.2万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了