Real-time control of memory encoding
内存编码实时控制
基本信息
- 批准号:9977812
- 负责人:
- 金额:$ 6.93万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-08-01 至 2021-12-31
- 项目状态:已结题
- 来源:
- 关键词:AcquaintancesAutomobile DrivingBehaviorBrainClinicalContralateralCouplingCuesDataData CollectionDetectionElectroencephalographyEventEvent-Related PotentialsFailureFeedbackFrequenciesFunctional Magnetic Resonance ImagingGoalsInterventionLaboratoriesLinkLocationMaintenanceMeasuresMemoryMental disordersModelingMonitorNamesOccupationalParticipantPerformanceReaction TimeReportingResearchRewardsRoleShapesShort-Term MemorySignal TransductionStimulusSumSystemTestingTimeVisualVolitionbasebrain computer interfaceexperimental studyimprovedlenslong term memorymemory encodingmemory retentionnervous system disorderneurofeedbackneurotransmissionrelating to nervous systemstimulus intervalsuccesstemporal measurementtime usevisual information
项目摘要
Project Summary
Fluctuations of neural activity impact memory. Subsequent memory analyses have demonstrated that
particular neural states predict better working memory and long-term memory behavior. These analyses are
typically conducted after data collection, but monitoring neural fluctuations in real time would enable more
direct and timely interventions. We will use real-time electroencephalography (EEG) to track moment-to-
moment fluctuations of neural activity in order to more directly link brain signals with behavior, and to enhance
memory performance. In this proposal, we focus on two key moments for memories: pre-stimulus (Aim 1) and
active maintenance during a retention interval (Aim 2). In Aim 1, we will test the hypothesis that pre-stimulus
neural signals (oscillatory alpha and theta) predict memory encoding success. In Experiment 1, we will vary the
point of time when the stimuli appear based on real-time calculations of alpha and theta power. We will use
neural activity as the independent variable to “trigger” stimulus presentation when the brain is in either
advantageous states (low alpha, high theta) or disadvantageous states (high alpha, low theta). We predict that
better brain states will predict better working memory and long-term memory precision in a sensitive
continuous report task. In Experiment 2, we will provide neurofeedback to reward advantageous pre-stimulus
brain states (low alpha, high theta). We predict that up-regulating these advantageous states will lead to
enhanced memory performance (more precise memories). In Aim 2, we will test the hypothesis that sustained
activity tracks active maintenance of information. Sustained activity is a key signature of working memory, but
recent evidence has questioned its role through the demonstration of activity-silent working memory. In
Experiment 3, we will use real-time measures of sustained activity (contralateral delay activity, multivariate
alpha topography) to adjust the duration of a retention interval and the identity of working memory probes. We
predict that performance will be better (quicker reaction times, more precise memories) when memory probes
are triggered based on higher sustained activity. In Experiment 4, we will provide neurofeedback during the
retention interval to reward greater sustained activity. We predict that up-regulating these advantageous states
will lead to greater memory precision. Across these experiments, we will explore memory encoding via the lens
of real-time EEG to trigger information (Experiments 1 & 3) and provide feedback (Experiments 2 & 4). The
proposed research will characterize the fate of mnemonic representations by tracking and driving neural
activity both pre-encoding (Aim 1) and post-encoding (Aim 2), in order to understand how neural fluctuations
give rise to what we remember.
项目摘要
神经活动的波动会影响记忆。随后的记忆分析表明,
特定的神经状态预示着更好的工作记忆和长期记忆行为。这些分析
通常在数据收集后进行,但在真实的时间监测神经波动将使更多的
直接和及时的干预。我们将使用实时脑电图(EEG)来跟踪
为了更直接地将大脑信号与行为联系起来,
内存性能在这个建议中,我们关注记忆的两个关键时刻:刺激前(目标1)和
在保留间隔期间进行主动维护(目标2)。在目标1中,我们将检验预刺激
神经信号(振荡的α和θ)预测记忆编码的成功。在实验1中,我们将改变
基于α和θ功率的实时计算,刺激出现的时间点。我们将使用
神经活动作为自变量,以“触发”刺激呈现,当大脑处于
有利状态(低α,高θ)或不利状态(高α,低θ)。我们预测
更好的大脑状态将预测更好的工作记忆和长期记忆精度在一个敏感的
连续报告任务。在实验2中,我们将提供神经反馈来奖励有利的前刺激
大脑状态(低α,高θ)。我们预测,上调这些有利状态将导致
增强的记忆性能(更精确的记忆)。在目标2中,我们将测试持续的假设,
活动跟踪信息的主动维护。持续的活动是工作记忆的一个关键特征,
最近的证据通过活动沉默工作记忆的展示对其作用提出了质疑。在
实验3,我们将使用持续活动的实时测量(对侧延迟活动,多变量
阿尔法地形图)来调整保持间隔的持续时间和工作记忆探针的身份。我们
预测当内存探测时,性能会更好(更快的反应时间,更精确的记忆)
都是基于更高的持续活动而触发的。在实验4中,我们将提供神经反馈,
保持间隔,以奖励更大的持续活动。我们预测,上调这些有利状态
将导致更高的记忆精度。在这些实验中,我们将通过透镜探索记忆编码
的实时EEG触发信息(实验1和3)和提供反馈(实验2和4)。的
拟议中的研究将通过跟踪和驱动神经元,
活动编码前(目的1)和编码后(目的2),以了解神经波动如何
让我们想起了什么
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Megan Teresa deBettencourt其他文献
Megan Teresa deBettencourt的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Megan Teresa deBettencourt', 18)}}的其他基金
Real-time control of memory encoding - Revision 1
内存编码的实时控制 - 修订版 1
- 批准号:
10373859 - 财政年份:2021
- 资助金额:
$ 6.93万 - 项目类别:
相似海外基金
Establishment of a method for evaluating automobile driving ability focusing on frontal lobe functions and its application to accident prediction
以额叶功能为中心的汽车驾驶能力评价方法的建立及其在事故预测中的应用
- 批准号:
20K07947 - 财政年份:2020
- 资助金额:
$ 6.93万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Evaluation of the Effectiveness of Multi-Professional Collaborative Assessment of Cognitive Function and Automobile Driving Skills and Comprehensive Support
认知功能与汽车驾驶技能多专业协同评估效果评价及综合支持
- 批准号:
17K19824 - 财政年份:2017
- 资助金额:
$ 6.93万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Development of Flexible Automobile Driving Interface for Disabled People
残疾人灵活汽车驾驶界面开发
- 批准号:
25330237 - 财政年份:2013
- 资助金额:
$ 6.93万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Automobile driving among older people with dementia: the effect of an intervention using a support manual for family caregivers
患有痴呆症的老年人的汽车驾驶:使用家庭护理人员支持手册进行干预的效果
- 批准号:
23591741 - 财政年份:2011
- 资助金额:
$ 6.93万 - 项目类别:
Grant-in-Aid for Scientific Research (C)