Cu Transporting ATPase and Diabetic Vascular Complications
铜转运 ATP 酶与糖尿病血管并发症
基本信息
- 批准号:9977232
- 负责人:
- 金额:$ 68.07万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-01 至 2022-07-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalATP phosphohydrolaseAddressAnimal ModelAnimalsBindingBinding SitesBioavailableBiological AssayBiological AvailabilityBiotinylationBlood VesselsCardiacCardiovascular systemCellsClinicalComplications of Diabetes MellitusCopperDataDiabetes MellitusDiabetic AngiopathiesDiabetic mouseDiseaseDown-RegulationEndothelial CellsEndotheliumEnzymesExtracellular SpaceFluorescence MicroscopyFluorescence Resonance Energy TransferFunctional disorderGene TransferGoalsGrantHindlimbHomeostasisHumanHypertensionImpairmentInductively Coupled Plasma Mass SpectrometryInflammationInflammatoryInjectionsIschemiaKnockout MiceLeadLeukocytesMeasuresMicronutrientsMolecularMorbidity - disease rateMusMutatePatientsPerfusionPeripheralPeripheral Vascular DiseasesPermeabilityPlayProtein-Lysine 6-OxidaseReportingRisk FactorsRoentgen RaysRoleScaffolding ProteinSignal TransductionSynchrotronsTestingTissuesTransgenic MiceTransgenic OrganismsUbiquitinationVascular DiseasesVascular Endothelial Growth FactorsVascular Permeabilitiesangiogenesisbasecadherin 5copper-transporting ATPasecritical limb Ischemiadiabeticdiabetic patientextracellularin vivoinnovationinsightintravital microscopylive cell imagingmigrationmortalitymutantneovascularizationnew therapeutic targetnoveloverexpressionpreventprogramsprotein protein interactionrecruitrepairedsmall hairpin RNAtherapeutic targettissue repairtranscription factorwound healing
项目摘要
This grant will elucidate the novel protective role of “Copper transporting ATPase (ATP7A)” against
impaired reparative neovascularization in diabetic ischemic vascular diseases. Diabetic complication
leads to defective neovascularization in ischemic peripheral vascular disease due to impaired angiogenesis and
endothelial cell (EC) barrier dysfunction with unknown mechanisms. Copper (Cu), an essential micronutrient, is
involved in angiogenesis while excess Cu contributes to inflammatory diseases such as diabetes. Since excess
Cu is toxic, bioavailability of intracellular Cu is tightly controlled by ATP7A which delivers Cu to the secretory Cu
enzymes, or exports Cu to extracellular space. Our lab discovered that ATP7A in VSMC protects against
hypertension. We also identified ‘IQGAP1” as a VEGF receptor2 (VEGFR2) binding scaffold protein promoting
VEGF signaling and post-ischemic angiogenesis. However, role of ATP7A in ECs for defective post-ischemic
revascularization in diabetes is entirely unknown. Preliminary data suggest that ATP7A prevents VEGFR2
degradation through binding to IQGAP1 and maintains basal EC barrier function via regulating VE-cadherin (VE-
Cad). ATP7A expression is markedly decreased in ECs from diabetic mice or microvessels of type2 diabetes
patients. ATP7A mutant (ATP7Amut) mice with reduced Cu transport function or diabetic mice show impaired
ischemia-induced reparative angiogenesis with excess tissue Cu and vascular permeability/tissue damage,
which are rescued by overexpression of ATP7A. We thus hypothesize that ATP7A functions to promote and
integrate key vascular repair programs such as angiogenesis and maintaining endothelial barrier
function in a Cu-dependent manner, which is required for restoring neovascularization in diabetic
ischemic vascular disease. Aim 1 will define the protective role of ATP7A against: i) impaired VEGF-induced
angiogenesis by stabilizing VEGFR2 and ii) endothelial barrier dysfunction by maintaining Cu homeostasis in
ECs isolated from diabetic mice and human microvessels of type2 diabetic patients. Aim 2 will determine the
molecular mechanism by which ATP7A downregulation in diabetes impairs VEGFR2 signaling and endothelial
barrier integrity by focusing on; i) ATP7A binding to IQGAP1 that prevents VEGFR2 ubiquitination/degradation
in a Cu-independent manner, and ii) role of ATP7A in regulating miR-125b that represses VE-Cad via Cu-
dependent transcription factor Atox1. Aim 3 will define the protective role of ATP7A against diabetes-induced
impaired post-ischemic neovascularization and tissue repair in vivo and address underlying mechanisms using
animal model of critical limb ischemia. We will use ATP7Amut and ATP7A transgenic mice; inducible EC-specific
ATP7A-/- or Cu importer CTR1-/- mice or type1 and type2 diabetes mice; innovative ICP-Mass Spec, X-ray
fluorescence microscopy to analyze [Cu]i in cells and tissues; FRET or BiFC-based protein-protein interaction;
and intravital microscopy. Our study will uncover Cu transporter ATP7A as a novel potential therapeutic target
to enhance integrated vascular repair program in patients with diabetic vascular complications.
该基金将阐明“铜转运ATP酶(ATP 7A)”对细胞凋亡的新保护作用。
糖尿病缺血性血管疾病中的修复性新生血管形成受损。糖尿病并发症
在缺血性外周血管疾病中由于血管生成受损而导致有缺陷的新血管形成,
内皮细胞(EC)屏障功能障碍,机制不明。铜(Cu)是一种必需的微量营养素,
参与血管生成,而过量的铜会导致糖尿病等炎症性疾病。因为过量
铜是有毒的,细胞内铜的生物利用度由ATP 7A严格控制,ATP 7A将铜运送到分泌铜
酶,或输出铜到细胞外空间。我们的实验室发现,ATP 7A在VSMC中可以防止
高血压我们还鉴定了“IQGAP 1”作为VEGF受体2(VEGFR 2)结合支架蛋白,
VEGF信号传导和缺血后血管生成。然而,ATP 7A在缺血后缺陷性内皮细胞中的作用,
糖尿病中的血管重建是完全未知的。初步数据表明,ATP 7A阻止VEGFR 2
并通过调节VE-钙粘蛋白(VE-钙粘蛋白)维持基础EC屏障功能。
Cad)。糖尿病小鼠内皮细胞及2型糖尿病微血管中ATP 7A表达明显降低
患者具有降低的Cu转运功能的ATP 7A突变体(ATP 7Amut)小鼠或糖尿病小鼠表现出受损的Cu转运功能。
局部缺血诱导的修复性血管生成与过量的组织Cu和血管渗透性/组织损伤,
通过过表达ATP 7A来拯救。因此,我们假设ATP 7A的功能是促进和
整合关键血管修复程序,如血管生成和维持内皮屏障
以Cu依赖性方式发挥作用,这是恢复糖尿病患者新血管形成所必需的。
缺血性血管疾病目的1将定义ATP 7A针对以下的保护作用:i)受损的VEGF诱导的细胞凋亡。
ii)通过稳定VEGFR 2来促进血管生成,和ii)通过维持Cu稳态来促进内皮屏障功能障碍。
从糖尿病小鼠和2型糖尿病患者的人微血管中分离的EC。目标2将决定
糖尿病中ATP 7A下调损害VEGFR 2信号传导和内皮细胞的分子机制
i)ATP 7A与IQGAP 1结合,阻止VEGFR 2泛素化/降解
和ii)ATP 7A在调节miR-125 b中的作用,miR-125 b通过Cu-2抑制VE-Cad。
依赖性转录因子Atox 1。目的3将确定ATP 7A对糖尿病诱导的糖尿病的保护作用。
受损的缺血后新血管形成和体内组织修复,并使用
严重肢体缺血的动物模型。我们将使用ATP 7Amut和ATP 7A转基因小鼠;诱导型EC特异性
ATP 7A-/-或Cu导入剂CTR 1-/-小鼠或1型和2型糖尿病小鼠;创新的ICP-质谱,X射线
荧光显微镜分析细胞和组织中的[Cu]i;基于FRET或BiFC的蛋白质-蛋白质相互作用;
和活体显微镜检查。我们的研究将揭示铜转运蛋白ATP 7A作为一个新的潜在的治疗靶点
加强糖尿病血管并发症患者的综合血管修复计划。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
TOHRU FUKAI其他文献
TOHRU FUKAI的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('TOHRU FUKAI', 18)}}的其他基金
Redox Regulation of Cu Importer CTR1 in Angiogenesis
Cu 进口商 CTR1 在血管生成中的氧化还原调节
- 批准号:
10323649 - 财政年份:2019
- 资助金额:
$ 68.07万 - 项目类别:
Redox Regulation of Cu Importer CTR1 in Angiogenesis
Cu 进口商 CTR1 在血管生成中的氧化还原调节
- 批准号:
10534180 - 财政年份:2019
- 资助金额:
$ 68.07万 - 项目类别:
Redox Regulation of Cu Importer CTR1 in Angiogenesis
Cu 进口商 CTR1 在血管生成中的氧化还原调节
- 批准号:
9916528 - 财政年份:2019
- 资助金额:
$ 68.07万 - 项目类别:
Cu Transporting ATPase and Diabetic Vascular Complications
铜转运 ATP 酶与糖尿病血管并发症
- 批准号:
9389671 - 财政年份:2017
- 资助金额:
$ 68.07万 - 项目类别:
Copper transport protein and inflammatory angiogenesis
铜转运蛋白与炎症血管生成
- 批准号:
8700502 - 财政年份:2013
- 资助金额:
$ 68.07万 - 项目类别:
Copper transport protein and inflammatory angiogenesis
铜转运蛋白与炎症血管生成
- 批准号:
8842696 - 财政年份:2013
- 资助金额:
$ 68.07万 - 项目类别:
Copper transport protein and inflammatory angiogenesis
铜转运蛋白与炎症血管生成
- 批准号:
9484073 - 财政年份:2013
- 资助金额:
$ 68.07万 - 项目类别:
Copper transport protein and inflammatory angiogenesis
铜转运蛋白与炎症血管生成
- 批准号:
8422531 - 财政年份:2013
- 资助金额:
$ 68.07万 - 项目类别:
Role of Copper Transporters in Vascular Remodeling
铜转运蛋白在血管重塑中的作用
- 批准号:
8143009 - 财政年份:2011
- 资助金额:
$ 68.07万 - 项目类别:
Role of Copper Transporters in Vascular Remodeling
铜转运蛋白在血管重塑中的作用
- 批准号:
8598039 - 财政年份:2011
- 资助金额:
$ 68.07万 - 项目类别: