Improving combination chemotherapy of tuberculosis: a computational approach
改善结核病联合化疗:一种计算方法
基本信息
- 批准号:9977085
- 负责人:
- 金额:$ 42.18万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-08-01 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdverse effectsAntitubercular AgentsAreaBacterial Drug ResistanceBiologicalBioreactorsC3HeB/FeJ MouseCalibrationClinicalClinical DataClinical TrialsCombination Drug TherapyCombined Modality TherapyCommunicable DiseasesCommunity DevelopmentsComputing MethodologiesConflict (Psychology)Critical PathwaysDataDevelopmentDiseaseDoseDose-LimitingDrug CombinationsDrug InteractionsDrug resistanceEngineeringEvaluationExperimental ModelsFailureFiberFutureGenetic ProgrammingGoalsHIVHIV InfectionsHealthHumanIn VitroInbred BALB C MiceIndividualKineticsLifeMalariaMalignant NeoplasmsMathematicsMeasurementMeasuresMetabolismMethodologyMethodsModelingMoxifloxacinMulti-Drug ResistanceMultidrug-Resistant TuberculosisMusNatural SelectionsOutcomePatientsPharmaceutical PreparationsPharmacotherapyPhasePhase I/II Clinical TrialPhase II Clinical TrialsPhase III Clinical TrialsProcessPublic HealthPyrazinamideRegimenRelapseResistanceRiskSafetySpecific qualifier valueSystemTestingTherapeuticTimeToxic effectTranslatingTreatment ProtocolsTuberculosisUnited States Food and Drug AdministrationUpdateVirus DiseasesWorkanimal efficacybasecancer therapyclinical developmentclinical translationclinically relevantcomparative efficacycomputer frameworkcostdesigndosagedrug developmenteffective therapyefficacy studyevidence baseimprovedinnovationmathematical modelmultiple drug usenovelnovel drug combinationnovel strategiesopen sourcepathogenpatient subsetspharmacokinetic modelpre-clinicalpreclinical studyresearch clinical testingresponserisk minimizationsoundtooltuberculosis chemotherapytuberculosis drugstuberculosis treatment
项目摘要
Project Summary/Abstract
Tuberculosis (TB) is a widespread bacterial infectious disease that kills nearly 1.5 million people annually. While
effective drug therapy for TB has been available for more than 50 years, there is a substantial number of drug
resistant clinical cases that are significantly impacting public health. Drug regimens for TB are designed to limit
the emergence of resistance by using multiple drugs concurrently (combination therapy) which greatly increases
the time and cost of their development. While the U.S. Food and Drug Administration (FDA), in partnership with
the recently formed Critical Path to New TB Drug Regimens (CPTR) initiative, now provides regulatory guidance
for developing new drug combinations as a single unit, and while several new anti-TB regimens are in clinical
testing under this FDA guidance, there are critical questions about how to establish the optimal dose of
each individual drug within these new combination regimens.
Dosage regimens for new anti-TB drug combinations are generally based on finding an optimal dose for
every single drug in the preclinical stage, and through Phase II dose-ranging clinical trials. While tailoring the
doses of each individual drug within a drug combination could potentially yield a more effective and better
tolerated treatment regimen, the exponential increase in the in vitro methodologies, animal efficacy studies, and
clinical testing required to identify such doses for combinations of three or more drugs needed for TB would be
prohibitively expensive. To address this gap in TB drug development we propose a new approach to dosage
regimen design of combination drug therapies that consists of (1) the use of conventional preclinical and
clinical measurements to inform a mathematical dose-response model for a specified drug combination in TB
patients, (2) the integration of this mathematical model with a biologically inspired genetic algorithm to design
dosage regimens in a manner analogous to natural selection, and (3) the empirical evaluation of these optimized
regimens in experimental TB-infection models.
To establish our approach with a clinically relevant example, we will design optimized dosage regimens
for the new anti-TB combination pretomanid + moxifloxacin + pyrazinamide (PaMZ); a promising and urgently
needed treatment option for patients with multidrug resistant (MDR) TB, currently assessed in a Phase II clinical
trial. There is a large amount of high quality preclinical and clinical data for this TB drug combination that will
provide a sound evidence base to develop our computational framework and to test our conclusions. Successful
completion of the proposed aims will establish new methods and tools to better translate preclinical studies
to clinical dosage regimen design for future anti-TB combinations. While motivated by the needs of TB drug
development, this project includes innovations that apply to the treatment of other diseases such as cancer,
human immunodeficiency virus (HIV) infection, and malaria.
项目总结/摘要
结核病(TB)是一种广泛存在的细菌性传染病,每年造成近150万人死亡。而
结核病有效药物治疗已有50多年历史,
耐药的临床病例对公共卫生产生重大影响。结核病的药物治疗方案旨在限制
同时使用多种药物(联合治疗)会出现耐药性,
开发的时间和成本。虽然美国食品和药物管理局(FDA)与
最近成立的新结核病药物方案关键路径(CPTR)倡议,现在提供监管指导
开发新的药物组合作为一个单一的单位,而几个新的抗结核病方案在临床上,
在FDA的指导下进行测试,关于如何确定最佳剂量的关键问题
这些新的联合治疗方案中的每一种药物。
新的抗结核药物组合的剂量方案通常基于找到最佳剂量,
每一个单一的药物在临床前阶段,并通过第二阶段的剂量范围临床试验。在裁剪
药物组合中每种单独药物的剂量可能会产生更有效和更好的效果。
耐受的治疗方案,体外方法学的指数增加,动物有效性研究,
为确定治疗结核病所需的三种或三种以上药物组合的剂量,
昂贵得令人望而却步。为了解决结核病药物开发中的这一差距,我们提出了一种新的剂量方法
联合药物治疗的方案设计,包括(1)使用常规的临床前和
为结核病特定艾德药物组合提供数学剂量反应模型的临床测量
患者,(2)将此数学模型与生物启发的遗传算法相结合,以设计
剂量方案的方式类似于自然选择,和(3)这些优化的经验评价
实验性TB感染模型中的治疗方案。
为了建立我们的方法与临床相关的例子,我们将设计优化的剂量方案
对于新的抗结核组合pretomanid +莫西沙星+吡嗪酰胺(PaMZ),
耐多药(MDR)结核病患者所需的治疗选择,目前正在II期临床试验中进行评估
审判这种结核病药物组合有大量高质量的临床前和临床数据,
提供了一个健全的证据基础,以发展我们的计算框架,并测试我们的结论。成功
拟议目标的完成将建立新的方法和工具,以更好地转化临床前研究
为将来的抗结核联合用药设计临床剂量方案。在受到结核病药物需求的激励的同时
发展,该项目包括适用于治疗其他疾病,如癌症,
人类免疫缺陷病毒(HIV)感染和疟疾。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Pretomanid dose selection for pulmonary tuberculosis: An application of multi-objective optimization to dosage regimen design.
- DOI:10.1002/psp4.12591
- 发表时间:2021-03
- 期刊:
- 影响因子:0
- 作者:Lyons MA
- 通讯作者:Lyons MA
Pharmacodynamics and Bactericidal Activity of Combination Regimens in Pulmonary Tuberculosis: Application to Bedaquiline-Pretomanid-Pyrazinamide.
肺结核联合治疗的药效学和杀菌活性:贝达喹啉-Pretomanid-吡嗪酰胺的应用。
- DOI:10.1128/aac.00898-22
- 发表时间:2022
- 期刊:
- 影响因子:4.9
- 作者:Lyons,MichaelA
- 通讯作者:Lyons,MichaelA
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael A. Lyons其他文献
Michael A. Lyons的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael A. Lyons', 18)}}的其他基金
Improving combination chemotherapy of tuberculosis: a computational approach
改善结核病联合化疗:一种计算方法
- 批准号:
9294943 - 财政年份:2016
- 资助金额:
$ 42.18万 - 项目类别:
Improving combination chemotherapy of tuberculosis: a computational approach
改善结核病联合化疗:一种计算方法
- 批准号:
9157047 - 财政年份:2016
- 资助金额:
$ 42.18万 - 项目类别:
Optimal Drug Regimens for TB: An Integrated Computational/Experimental Approach
结核病的最佳药物治疗方案:综合计算/实验方法
- 批准号:
8704320 - 财政年份:2011
- 资助金额:
$ 42.18万 - 项目类别:
Optimal Drug Regimens for TB: An Integrated Computational/Experimental Approach
结核病的最佳药物治疗方案:综合计算/实验方法
- 批准号:
8892035 - 财政年份:2011
- 资助金额:
$ 42.18万 - 项目类别:
Optimal Drug Regimens for TB: An Integrated Computational/Experimental Approach
结核病的最佳药物治疗方案:综合计算/实验方法
- 批准号:
8110449 - 财政年份:2011
- 资助金额:
$ 42.18万 - 项目类别:
Optimal Drug Regimens for TB: An Integrated Computational/Experimental Approach
结核病的最佳药物治疗方案:综合计算/实验方法
- 批准号:
8514488 - 财政年份:2011
- 资助金额:
$ 42.18万 - 项目类别:
相似海外基金
Unraveling Adverse Effects of Checkpoint Inhibitors Using iPSC-derived Cardiac Organoids
使用 iPSC 衍生的心脏类器官揭示检查点抑制剂的副作用
- 批准号:
10591918 - 财政年份:2023
- 资助金额:
$ 42.18万 - 项目类别:
Optimization of mRNA-LNP vaccine for attenuating adverse effects and analysis of mechanism behind adverse effects
mRNA-LNP疫苗减轻不良反应的优化及不良反应机制分析
- 批准号:
23K15383 - 财政年份:2023
- 资助金额:
$ 42.18万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Elucidation of adverse effects of combined exposure to low-dose chemicals in the living environment on allergic diseases and attempts to reduce allergy
阐明生活环境中低剂量化学品联合暴露对过敏性疾病的不良影响并尝试减少过敏
- 批准号:
23H03556 - 财政年份:2023
- 资助金额:
$ 42.18万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Green tea-based nano-enhancer as an adjuvant for amplified efficacy and reduced adverse effects in anti-angiogenic drug treatments
基于绿茶的纳米增强剂作为抗血管生成药物治疗中增强疗效并减少不良反应的佐剂
- 批准号:
23K17212 - 财政年份:2023
- 资助金额:
$ 42.18万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Effects of Tobacco Heating System on the male reproductive function and towards to the reduce of the adverse effects.
烟草加热系统对男性生殖功能的影响以及减少不利影响。
- 批准号:
22H03519 - 财政年份:2022
- 资助金额:
$ 42.18万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Mitigating the Adverse Effects of Ultrafines in Pressure Filtration of Oil Sands Tailings
减轻油砂尾矿压力过滤中超细粉的不利影响
- 批准号:
563657-2021 - 财政年份:2022
- 资助金额:
$ 42.18万 - 项目类别:
Alliance Grants
1/4-Deciphering Mechanisms of ECT Outcomes and Adverse Effects (DECODE)
1/4-破译ECT结果和不良反应的机制(DECODE)
- 批准号:
10521849 - 财政年份:2022
- 资助金额:
$ 42.18万 - 项目类别:
4/4-Deciphering Mechanisms of ECT Outcomes and Adverse Effects (DECODE)
4/4-破译ECT结果和不良反应的机制(DECODE)
- 批准号:
10671022 - 财政年份:2022
- 资助金额:
$ 42.18万 - 项目类别:
2/4 Deciphering Mechanisms of ECT Outcomes and Adverse Effects (DECODE)
2/4 ECT 结果和不良反应的破译机制(DECODE)
- 批准号:
10670918 - 财政年份:2022
- 资助金额:
$ 42.18万 - 项目类别:
Downsides of downhill: The adverse effects of head vibration associated with downhill mountain biking on visuomotor and cognitive function
速降的缺点:与速降山地自行车相关的头部振动对视觉运动和认知功能的不利影响
- 批准号:
2706416 - 财政年份:2022
- 资助金额:
$ 42.18万 - 项目类别:
Studentship