Post-transcriptional gene regulation
转录后基因调控
基本信息
- 批准号:9977218
- 负责人:
- 金额:$ 71.29万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-05-01 至 2021-04-30
- 项目状态:已结题
- 来源:
- 关键词:AreaBiochemicalBiochemical GeneticsBiogenesisBiological ProcessCellsCleaved cellComplexCongenital AbnormalityCouplingDefectDevelopmentDiseaseEmbryoEmbryonic DevelopmentEnzymesFertilityGene Expression RegulationGene Silencing PathwayGenesGenetic StructuresGenetic TranscriptionHumanLengthMalignant NeoplasmsMessenger RNAMethodsMicroRNAsMolecularMolecular ComputationsPathway interactionsPatientsPlayPoly(A) TailPost-Transcriptional RegulationPrincipal InvestigatorProcessProteinsRNARNA InterferenceRegulationRegulator GenesRegulatory PathwayReporter GenesResourcesRoleSmall Interfering RNAStructureTailTranscriptTranslational RepressionUntranslated RNAViral CancerVirusVirus DiseasesYeastsZebrafishexperimental studygastrulationgene functiongenetic approachhuman diseaseimprovedinsightmRNA Stabilitynovel therapeuticsprogramspublic health relevancerecruit
项目摘要
DESCRIPTION (provided by applicant): Much of eukaryotic gene regulation occurs post-transcriptionally, through differential mRNA stability and/or translational efficiency. The researc of this proposal seeks to answer fundamental questions within three interrelated areas of post-transcriptional gene control: microRNAs, RNA interference, and mRNA poly (A) tails. MicroRNAs (miRNAs) are ~22-nt RNAs that pair to mRNAs to direct their destabilization and translational repression. More than 600 miRNA genes have been identified in humans, and because most human genes are conserved targets of miRNAs, it is no surprise that miRNAs play important roles in mammalian development and human diseases, including viral infections and cancers. Molecular, computational, and structural approaches will be used to determine 1) how the microRNA-biogenesis machinery recognizes the cellular transcripts that are to be processed into microRNAs, 2) the biochemical basis of miRNA-target recognition and improved methods for predicting the most repressed targets, 3) the reason that mRNAs from reporter genes are repressed differently than those from endogenous genes, and 4) the mechanism and the biological function of the regulation of a miRNA by a long noncoding RNA. Results of these studies are expected to enhance the fundamental understanding of this important class of gene-regulatory molecules and provide resources helpful for many biologists, including those studying the roles of miRNAs in human diseases. RNA interference (RNAi) is a gene-regulatory pathway that many eukaryotic species use to silence transposons and viruses. In this pathway, short interfering RNAs (siRNAs) resembling miRNAs are loaded into Argonaute, which is an effector protein that cleaves transcripts with extensive complementarity to the siRNA. Genetic, structural, biochemical, and molecular approaches will be used to 1) identify and study additional proteins required for efficient RNAi in yeast, 2) determine how the siRNA-Argonaute complex forms and how it recognizes mRNA targets, and 3) investigate the unusual activities of zebrafish Argonaute. Results are expected to provide mechanistic insight into this gene-silencing pathway fundamental for defending many eukaryotic species against transposons and viruses, with practical implications for biologists using this pathway to study gene function, as well as those harnessing it to treat patients. mRNA poly (A) tails are important for mRNA stability and translational efficiency, and metazoan miRNAs usually act by recruiting enzymes that shortening poly (A) tails. The relationship between poly (A)-tail length and translational efficiency changes as the embryo develops. Molecular, computational, biochemical, and genetic approaches will be used to determine how coupling between tail length and translational efficiency is established before gastrulation and why it disappears after gastrulation. Results are
expected to provide fundamental insight into translational control and embryonic development, with potential implications for human fertility, developmental defects, or other diseases. OMB No. 0925-0001/0002 (Rev. 08/12 Approved Through 8/31/2015) Page Continuation Format Page
描述(由申请人提供):许多真核基因调控通过差异mRNA稳定性和/或翻译效率在转录后发生。本研究旨在回答转录后基因控制的三个相互关联的领域内的基本问题:microRNA,RNA干扰和mRNA poly(A)tail。微小RNA(microRNAs,miRNAs)是一种长度约为22个核苷酸的RNA,与mRNA配对,指导其去稳定化和翻译抑制。在人类中已经鉴定了600多个miRNA基因,并且由于大多数人类基因是miRNA的保守靶点,因此miRNA在哺乳动物发育和人类疾病(包括病毒感染和癌症)中发挥重要作用也就不足为奇了。分子、计算和结构方法将用于确定1)microRNA生物发生机制如何识别待加工成microRNA的细胞转录物,2)miRNA靶识别的生化基础和用于预测最受抑制的靶的改进方法,3)来自报告基因的mRNA与来自内源基因的mRNA不同地被抑制的原因,长链非编码RNA调控miRNA的机制和生物学功能。这些研究的结果有望增强对这类重要的基因调控分子的基本理解,并为许多生物学家提供有用的资源,包括那些研究miRNA在人类疾病中的作用的生物学家。RNA干扰(RNAi)是一种基因调控途径,许多真核生物使用它来沉默转座子和病毒。在该途径中,类似于miRNA的短干扰RNA(siRNA)被加载到Argonaute中,Argonaute是一种效应蛋白,其切割与siRNA具有广泛互补性的转录物。遗传、结构、生物化学和分子方法将用于1)鉴定和研究酵母中有效RNAi所需的其他蛋白质,2)确定siRNA-Argonaute复合物如何形成以及它如何识别mRNA靶标,3)研究斑马鱼Argonaute的异常活性。结果预计将提供对这种基因沉默途径的机制性见解,这是保护许多真核物种免受转座子和病毒侵害的基础,对生物学家使用这种途径研究基因功能以及利用它治疗患者具有实际意义。mRNA poly(A)尾对于mRNA的稳定性和翻译效率是重要的,并且后生动物miRNA通常通过募集缩短poly(A)尾的酶来起作用。poly(A)尾长度和翻译效率之间的关系随着胚胎发育而变化。分子,计算,生物化学和遗传学的方法将被用来确定如何连接尾长和翻译效率之间建立原肠胚形成前,以及为什么它消失原肠胚形成后。结果
有望为翻译控制和胚胎发育提供基本见解,对人类生育力,发育缺陷或其他疾病具有潜在意义。 OMB编号0925-0001/0002(2012年8月批准至2015年8月31日修订版)页码续页格式页码
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
DAVID P BARTEL其他文献
DAVID P BARTEL的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('DAVID P BARTEL', 18)}}的其他基金
CRYSTAL STRUCTURE OF THE CATALYTIC CORE OF AN RNA POLYMERASE RIBOZYME
RNA聚合酶核酶催化核心的晶体结构
- 批准号:
8169216 - 财政年份:2010
- 资助金额:
$ 71.29万 - 项目类别:
CRYSTAL STRUCTURE OF THE CATALYTIC CORE OF AN RNA POLYMERASE RIBOZYME
RNA聚合酶核酶催化核心的晶体结构
- 批准号:
7955090 - 财政年份:2009
- 资助金额:
$ 71.29万 - 项目类别:
STRUCTURAL STUDIES OF THE CLASS I LIGASE RIBOZYME
I 类连接酶核酶的结构研究
- 批准号:
7721216 - 财政年份:2008
- 资助金额:
$ 71.29万 - 项目类别:
STRUCTURAL STUDIES OF THE CLASS I LIGASE RIBOZYME
I 类连接酶核酶的结构研究
- 批准号:
7182945 - 财政年份:2005
- 资助金额:
$ 71.29万 - 项目类别:
STRUCTURAL STUDIES OF THE CLASS I LIGASE RIBOZYME
I 类连接酶核酶的结构研究
- 批准号:
7369507 - 财政年份:2005
- 资助金额:
$ 71.29万 - 项目类别:
相似海外基金
Biochemical, genetics and molecular biology of the bacterial biphenyl catabolic pathway enzymes
细菌联苯分解代谢途径酶的生化、遗传学和分子生物学
- 批准号:
39579-2007 - 财政年份:2011
- 资助金额:
$ 71.29万 - 项目类别:
Discovery Grants Program - Individual
Biochemical, genetics and molecular biology of the bacterial biphenyl catabolic pathway enzymes
细菌联苯分解代谢途径酶的生化、遗传学和分子生物学
- 批准号:
39579-2007 - 财政年份:2010
- 资助金额:
$ 71.29万 - 项目类别:
Discovery Grants Program - Individual
Lipolysis: Biochemical Genetics, Physiology and Molecular Circuitry
脂肪分解:生化遗传学、生理学和分子回路
- 批准号:
201793 - 财政年份:2010
- 资助金额:
$ 71.29万 - 项目类别:
Operating Grants
Biochemical, genetics and molecular biology of the bacterial biphenyl catabolic pathway enzymes
细菌联苯分解代谢途径酶的生化、遗传学和分子生物学
- 批准号:
39579-2007 - 财政年份:2009
- 资助金额:
$ 71.29万 - 项目类别:
Discovery Grants Program - Individual
Biochemical, genetics and molecular biology of the bacterial biphenyl catabolic pathway enzymes
细菌联苯分解代谢途径酶的生化、遗传学和分子生物学
- 批准号:
39579-2007 - 财政年份:2008
- 资助金额:
$ 71.29万 - 项目类别:
Discovery Grants Program - Individual
Biochemical, genetics and molecular biology of the bacterial biphenyl catabolic pathway enzymes
细菌联苯分解代谢途径酶的生化、遗传学和分子生物学
- 批准号:
39579-2007 - 财政年份:2007
- 资助金额:
$ 71.29万 - 项目类别:
Discovery Grants Program - Individual
Biochemical, genetics and molecular biology of the bacterial bipehnyl catabolic pathway
细菌联苯分解代谢途径的生化、遗传学和分子生物学
- 批准号:
39579-2002 - 财政年份:2006
- 资助金额:
$ 71.29万 - 项目类别:
Discovery Grants Program - Individual
Biochemical, genetics and molecular biology of the bacterial bipehnyl catabolic pathway
细菌联苯分解代谢途径的生化、遗传学和分子生物学
- 批准号:
39579-2002 - 财政年份:2005
- 资助金额:
$ 71.29万 - 项目类别:
Discovery Grants Program - Individual
Biochemical, genetics and molecular biology of the bacterial bipehnyl catabolic pathway
细菌联苯分解代谢途径的生化、遗传学和分子生物学
- 批准号:
39579-2002 - 财政年份:2004
- 资助金额:
$ 71.29万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




