Interhemispheric interactions underlying bilateral somatosensation
双侧躯体感觉的半球间相互作用
基本信息
- 批准号:9979039
- 负责人:
- 金额:$ 19.73万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-05-01 至 2022-04-30
- 项目状态:已结题
- 来源:
- 关键词:AffectAnesthesia proceduresAreaAttention deficit hyperactivity disorderAxonBehaviorBehavioralBilateralBrainCerebral hemisphereCerebrumCodeCollectionCommunicationComplexCorpus CallosumDeformityDependenceDetectionDiscriminationEnvironmentFaceFutureIn VitroIndividualInvestigationKnowledgeLateralLeftLinkLocationMammalsMeasuresMediatingMental disordersMovementMusNatureNeocortexNeuronsOutcomePerceptionPopulationPositioning AttributePreparationPropertyRight cerebral hemisphereRodentRoleSchizophreniaSensorySideSignal Detection AnalysisSignal TransductionSomatosensory CortexSpace PerceptionSpecificityStimulusSystemTactileTask PerformancesTimeTouch sensationTrainingVibrissaeWorkautism spectrum disordercell typecognitive processdesignexperimental studyextracellularmotor behaviorneocorticalneuronal patterningneuroprosthesisnovelobject perceptionoptogeneticspreventrelating to nervous systemresponsesensory feedbacksensory integration
项目摘要
Project Summary/Abstract
The brain comprises two distinct hemispheres mainly connected to each other by the corpus callosum. Despite
the proven role of callosal connections in sensorimotor behaviors involving both sides of the body, the nature,
area and cell-type specificity, and the function of interhemispheric interactions in sensory perception are far from
understood. The proposed project will investigate those issues in the context of active bilateral vibrissa-mediated
somatosensation in the mouse, focusing on primary (S1) and secondary (S2) somatosensory cortices and their
associated callosal projections. The work will combine laminar extracellular recordings in S1 and S2, optogenetic
identification of callosal neurons, and chemogenetic modulation of callosal inputs with decoding and signal
detection analytic approaches to relate neuronal activity to stimulus encoding and perception while the mouse
actively whisks to contact static poles located on each side of the face. The first aim of the work is to investigate
the existence and nature of bilateral tactile signal interactions in S1 and S2 and their relation to sensory-evoked
callosal activity, as well as to establish whether bilateral features of tactile stimuli can be decoded from S1 and
S2 activity. The second aim of the work is to reveal the contribution of homologous callosal neurons of S1 and
S2 to the discrimination of bilateral tactile stimuli, and to determine whether S1 and S2 activity encodes
behaviorally relevant bilateral stimulus properties predictive of stimulus perception. Significance: The proposed
work will provide unprecedented information about the functional role of specific populations of neurons
constituting the corpus callosum. It will allow to reconcile investigations about the locus and the nature of
interhemispheric interactions conducted in reduced preparations with studies indirectly probing their behavioral
relevance. Furthermore, this work will provide a more complete understanding of somatosensation, identifying
area and cell types critical for bilateral tactile perception. It will also establish a novel sensory coding framework,
encompassing tactile signals arising from both sides of the body. Broad Impact: This project lays the groundwork
for future investigations on the role of interhemispheric interactions in the coordination of motor behaviors and
in cognitive processes implicating the left and right cerebral hemispheres. Additionally, it will enable targeted
functional investigations at the cellular and network level of several mental disorders characterized by abnormal
anatomical and functional interhemispheric connectivity, such as ADHD, autism and schizophrenia. Separately,
knowledge about cerebral cross-areal communication and its detailed computations will also be beneficial to
neuroengineering applications, particularly those regarding movement coordination and natural integration of
sensory feedback for bilateral neuroprostheses.
项目总结/摘要
大脑由两个不同的半球组成,主要通过胼胝体相互连接。尽管
胼胝体连接在涉及身体两侧的感觉运动行为中的已证实的作用,性质,
区域和细胞类型的特异性,以及感觉知觉中大脑半球间相互作用的功能,
明白拟议的项目将在积极的双边触须介导的背景下调查这些问题。
小鼠的躯体感觉,集中在初级(S1)和次级(S2)躯体感觉皮层及其
相关胼胝体投射这项工作将结合联合收割机在S1和S2层细胞外记录,光遗传学
胼胝体神经元的鉴定,以及通过解码和信号传导对胼胝体输入的化学发生调节
检测分析方法将神经元活动与刺激编码和感知联系起来,
主动地搅动以接触位于面部的每一侧上的静态杆。这项工作的第一个目的是调查
双侧触觉信号在S1和S2的相互作用的存在和性质及其与感觉诱发的关系
胼胝体活动,以及建立触觉刺激的双侧特征是否可以从S1解码,
S2活动本工作的第二个目的是揭示S1和S2的同源胼胝体神经元的作用。
S2对双侧触觉刺激的辨别,并确定S1和S2活动是否编码
行为相关的双边刺激属性预测刺激感知。意义:建议
这项工作将提供有关特定神经元群体功能作用的前所未有的信息。
构成胼胝体。它将允许调和有关地点和性质的调查,
在简化的准备工作中进行的大脑半球间的相互作用,
本案无关此外,这项工作将提供一个更完整的了解躯体感觉,识别
区域和细胞类型对双侧触觉感知至关重要。它还将建立一个新的感觉编码框架,
包括从身体两侧产生的触觉信号。广泛影响:该项目奠定了基础
为将来研究大脑半球间的相互作用在运动行为协调中的作用,
影响左右大脑半球的认知过程此外,它将使目标
在细胞和网络水平的功能研究,几种精神障碍的特点是异常
解剖和功能的半球间连接,如多动症,自闭症和精神分裂症。另外,
关于大脑跨区域通信及其详细计算的知识也将有助于
神经工程应用,特别是那些关于运动协调和自然整合的应用,
用于双侧神经假体的感觉反馈。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Garrett B. Stanley其他文献
Au Naturel
- DOI:
10.1016/j.neuron.2008.05.003 - 发表时间:
2008-05-22 - 期刊:
- 影响因子:
- 作者:
Garrett B. Stanley - 通讯作者:
Garrett B. Stanley
A Point Process Analysis of Sensory Encoding
感觉编码的点过程分析
- DOI:
10.1023/a:1027463810317 - 发表时间:
2003 - 期刊:
- 影响因子:1.2
- 作者:
Garrett B. Stanley;R. M. Webber - 通讯作者:
R. M. Webber
Spike reliability is cell type specific and shapes excitation and inhibition in the cortex
穗可靠性是细胞类型特异性的,并塑造皮质中的兴奋和抑制
- DOI:
10.1038/s41598-024-82536-y - 发表时间:
2025-01-02 - 期刊:
- 影响因子:3.900
- 作者:
Simone Russo;Garrett B. Stanley;Farzaneh Najafi - 通讯作者:
Farzaneh Najafi
Garrett B. Stanley的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Garrett B. Stanley', 18)}}的其他基金
Feedback and feedforward gating of sensory signaling through timing in the thalamocortical loop
通过丘脑皮质环路中的计时进行感觉信号的反馈和前馈门控
- 批准号:
10524608 - 财政年份:2022
- 资助金额:
$ 19.73万 - 项目类别:
Thalamocortical state control of tactile sensing: Mechanisms, Models, and Behavior
触觉感知的丘脑皮质状态控制:机制、模型和行为
- 批准号:
10115829 - 财政年份:2018
- 资助金额:
$ 19.73万 - 项目类别:
Thalamocortical state control of tactile sensing: Mechanisms, Models, and Behavior
触觉感知的丘脑皮质状态控制:机制、模型和行为
- 批准号:
10322432 - 财政年份:2018
- 资助金额:
$ 19.73万 - 项目类别:
In-vivo control of information flow by artificial stimulation: ephys and behavior
通过人工刺激对信息流进行体内控制:ephys 和行为
- 批准号:
8615257 - 财政年份:2013
- 资助金额:
$ 19.73万 - 项目类别:
In-vivo control of information flow by artificial stimulation: ephys and behavior
通过人工刺激对信息流进行体内控制:ephys 和行为
- 批准号:
8883267 - 财政年份:2013
- 资助金额:
$ 19.73万 - 项目类别:
In-vivo control of information flow by artificial stimulation: ephys and behavior
通过人工刺激对信息流进行体内控制:ephys 和行为
- 批准号:
9105421 - 财政年份:2013
- 资助金额:
$ 19.73万 - 项目类别: