Biochemical Mechanism of Beta-Cell Destruction
β细胞破坏的生化机制
基本信息
- 批准号:9979838
- 负责人:
- 金额:$ 38.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-07-17 至 2022-05-31
- 项目状态:已结题
- 来源:
- 关键词:AntioxidantsApoptosisAttenuatedAutoimmune DiabetesAutoimmune ProcessBeta CellBiochemicalBiologicalBlood VolumeCell RespirationCell SurvivalCell physiologyCellsDNA DamageDataDevelopmentDiabetes MellitusEquilibriumFeverGoalsHormonesHydrogen PeroxideImmunologicsImpairmentIndividualInfectionInflammationInflammatoryInjuryInsulinInsulin-Dependent Diabetes MellitusInterferon Type IIInterleukin-1Islets of LangerhansMediatingMediator of activation proteinMolecularNitric OxideNitrogenOxidantsOxygenPancreasPathway interactionsPeroxonitritePhosphotransferasesPhysiologicalPolynucleotide 5&apos-Hydroxyl-KinaseProcessProductionReactionRecurrenceRoleSignal TransductionStructure of beta Cell of isletSystemTNF geneTechniquesTestingTherapeuticTransgenic OrganismsTransplantationTravelWeightWorkataxia telangiectasia mutated proteinbasecell injurycytokinedesigninhibitor/antagonistinsightinsulin secretionisletpreventresponseself-renewal
项目摘要
Autoimmune diabetes is characterized by an inflammatory reaction in and around pancreatic islets that is followed by the selective destruction of insulin producing β-cells. The conventional wisdom is that cytokines, released during islet inflammation, contribute to the development of autoimmune diabetes by directly impairing β-cell function and reducing β-cell mass. In support of this hypothesis, treatment of islets with IL-1 alone, or in combination with IFN-γ and/or TNF, results in an inhibition of insulin secretion and oxidative metabolism, induction of DNA damage and a loss of β-cell viability that is mediated by iNOS expression and the production of nitric oxide by β-cells. For over 30 years there has been an intense focus on determining the mechanisms by which IL-1 damages β-cells, yet there is little direct evidence supporting a role for IL-1 in the development of autoimmune diabetes. Pancreatic β-cells are terminally differentiated with a limited capacity for self-renewal, yet produce a hormone (insulin) that is essential for organismal survival. IL-1 is a pyrogenic cytokine that is well known to induce fever and inflammation during infection and injury. If the β-cell response to IL-1 were solely damaging, then most individuals would be highly susceptible to diabetes, as 90 % of the volume of blood that enters the pancreas travels through islets (which represents 1% of the wet weight of the pancreas) such that β-cells would be bathed in IL-1 during infection and injury. This application will examine the hypothesis that there is a physiological role for IL-1 signaling in β-cells that is designed to protect these cells from impending danger or insult. In support of this hypothesis, we provide preliminary evidence showing that nitric oxide attenuates DNA damage induced β-cell apoptosis. By understanding the delicate balance between the damaging and protective actions of cytokines on β-cell function and survival, we hope to elucidate the physiological and pathophysiological roles of IL-1 signaling in β-cells. There are two specific aims. 1. To test the hypothesis that β-cells maintain a robust oxidant defense system that provides protection against damaging reactive nitrogen and oxygen species. 2. To test the hypothesis that nitric oxide, produced following cytokine treatment, attenuates DNA damage associated apoptosis by regulating the activation of transducing kinases of the DNA damage response (DDR). A number of biochemical, molecular, immunological, cell biological, and transgenic techniques will be utilized to investigate the cellular pathways through which nitric oxide and its reactive intermediates participate in the protection of β-cells from damage. It is hoped that insights into the mechanisms controlling the protective responses activated in β-cells following cytokine stimulate that are gained from these studies will influence the design of therapeutic strategies aimed that are based on activating protective pathways in β-cell as a mechanism to maintain functional β-cell mass and attenuate the development of diabetes or recurrence of diabetes in the transplantation setting.
自身免疫性糖尿病的特征在于胰岛内和周围的炎症反应,随后是产生胰岛素的β细胞的选择性破坏。传统观点认为,在胰岛炎症期间释放的细胞因子通过直接损害β细胞功能和减少β细胞质量而促进自身免疫性糖尿病的发展。为了支持这一假设,用单独的IL-1或与IFN-γ和/或TNF组合的IL-1处理胰岛导致胰岛素分泌和氧化代谢的抑制、DNA损伤的诱导和β细胞活力的丧失,这是由iNOS表达和β细胞产生一氧化氮介导的。30多年来,人们一直专注于确定IL-1损伤β细胞的机制,但几乎没有直接证据支持IL-1在自身免疫性糖尿病发展中的作用。胰腺β细胞终末分化,自我更新能力有限,但产生生物体生存所必需的激素(胰岛素)。IL-1是一种致热性细胞因子,众所周知其在感染和损伤期间诱导发热和炎症。如果β-细胞对IL-1的反应仅是破坏性的,那么大多数个体将对糖尿病高度敏感,因为进入胰腺的血液体积的90%穿过胰岛(其代表胰腺湿重的1%),使得β-细胞在感染和损伤期间将沐浴在IL-1中。本申请将检验以下假设:β细胞中的IL-1信号传导具有生理作用,旨在保护这些细胞免受即将发生的危险或损伤。为了支持这一假说,我们提供了初步证据表明,一氧化氮减弱DNA损伤诱导的β细胞凋亡。通过了解细胞因子对β细胞功能和存活的损伤和保护作用之间的微妙平衡,我们希望阐明IL-1信号在β细胞中的生理和病理生理作用。有两个具体目标。1.检验β细胞维持强大的氧化防御系统的假设,该系统提供针对破坏性活性氮和氧的保护。2.为了验证细胞因子处理后产生的一氧化氮通过调节DNA损伤反应(DDR)的转导激酶的激活来减弱DNA损伤相关凋亡的假设。许多生物化学,分子,免疫学,细胞生物学和转基因技术将被用于研究细胞途径,通过该途径一氧化氮及其反应中间体参与保护β细胞免受损伤。希望从这些研究中获得的对控制细胞因子刺激后β细胞中激活的保护性应答的机制的见解将影响治疗策略的设计,所述治疗策略旨在基于激活β细胞中的保护性途径作为维持功能性β细胞群并减弱移植环境中糖尿病发展或糖尿病复发的机制。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JOHN A CORBETT其他文献
JOHN A CORBETT的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JOHN A CORBETT', 18)}}的其他基金
Unfolded Protein Response: Regulator of Human beta-cells
未折叠蛋白反应:人类 β 细胞的调节因子
- 批准号:
6830872 - 财政年份:2004
- 资助金额:
$ 38.5万 - 项目类别:
Unfolded protein response as a regulator of human beta-*
未折叠的蛋白质反应作为人类β-*的调节剂
- 批准号:
6916219 - 财政年份:2004
- 资助金额:
$ 38.5万 - 项目类别:
相似国自然基金
半胱氨酸蛋白酶抑制剂B在缺血性脑卒中的功能及机制研究
- 批准号:JCZRLH202500240
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
“生地-天冬”配伍通过调控DPP4/CASP3抑制角质细胞凋亡从而防治皮肤光老化的作用机制
- 批准号:JCZRLH202500496
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于糖代谢重编程探究人参提取物RH2治疗黑色素瘤的机制
- 批准号:JCZRLH202500808
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
3D细胞球来源的凋亡小体修饰间充质干细胞的制备及“内外兼修”策略的构建用于脊髓损伤修复的作用机制研究
- 批准号:QN25H060008
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
鹰嘴豆芽素A靶向线粒体防控肺癌发生发展的机制研究
- 批准号:QN25H160055
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
吲哚-3-乙酸通过miR-9-5p-SIRT1-FOXO1通路调控糖尿病心肌病自噬凋亡失衡的机制研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于TLR4介导的RIPK1/NF-kB/NLRP3通路探讨雷公藤甲素调控泛凋亡治疗局灶节段硬化性肾小球肾炎的作用机制
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
间充质干细胞源性凋亡小体调控成纤维细胞NAD代谢治疗瘢痕疙瘩的机制研究
- 批准号:MS25H150038
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
CD53+中性粒细胞调节奶牛乳腺上皮凋亡的作用机制研究
- 批准号:R25C170001
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
P53凋亡刺激蛋白1在室性心律失常中的作用与机制研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
Development of an apoptosis biosensor for monitoring of breast cancer
开发用于监测乳腺癌的细胞凋亡生物传感器
- 批准号:
10719415 - 财政年份:2023
- 资助金额:
$ 38.5万 - 项目类别:
Milk fat globule-EGF factor 8 and hepatocyte apoptosis-induced liver wound healing response
乳脂肪球-EGF因子8与肝细胞凋亡诱导的肝脏创面愈合反应
- 批准号:
10585802 - 财政年份:2023
- 资助金额:
$ 38.5万 - 项目类别:
Interrogating the Fgl2-FcγRIIB axis on CD8+ T cells: A novel mechanism mediating apoptosis of tumor-specific memory CD8+ T cells
询问 CD8 T 细胞上的 Fgl2-FcγRIIB 轴:介导肿瘤特异性记忆 CD8 T 细胞凋亡的新机制
- 批准号:
10605856 - 财政年份:2023
- 资助金额:
$ 38.5万 - 项目类别:
Mechanistic analysis of apoptosis induction by HDAC inhibitors in head and neck cancer
HDAC抑制剂诱导头颈癌凋亡的机制分析
- 批准号:
23K15866 - 财政年份:2023
- 资助金额:
$ 38.5万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Novel targeted therapy for FGFR inhibitor-resistant urothelial cancer and apoptosis based therapy for urothelial cancer
FGFR抑制剂耐药性尿路上皮癌的新型靶向治疗和基于细胞凋亡的尿路上皮癌治疗
- 批准号:
23K08773 - 财政年份:2023
- 资助金额:
$ 38.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Interrogating the Fgl2-FcgRIIB axis: A novel mechanism mediating apoptosis of tumor-specific memory CD8+ T cells
探究 Fgl2-FcgRIIB 轴:介导肿瘤特异性记忆 CD8 T 细胞凋亡的新机制
- 批准号:
10743485 - 财政年份:2023
- 资助金额:
$ 38.5万 - 项目类别:
Investigating the role of apoptosis-resistance and the tumor environment on development and maintenance of sacrococcygeal teratomas
研究细胞凋亡抗性和肿瘤环境对骶尾部畸胎瘤发生和维持的作用
- 批准号:
10749797 - 财政年份:2023
- 资助金额:
$ 38.5万 - 项目类别:
The effects of glucose on immune cell apoptosis and mitochondrial membrane potential and the analysis of its mechanism by which glucose might modulate the immune functions.
葡萄糖对免疫细胞凋亡和线粒体膜电位的影响及其调节免疫功能的机制分析。
- 批准号:
22K09076 - 财政年份:2022
- 资助金额:
$ 38.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
XAF1 IN P53 SIGNALING, APOPTOSIS AND TUMOR SUPPRESSION
P53 信号传导、细胞凋亡和肿瘤抑制中的 XAF1
- 批准号:
10583516 - 财政年份:2022
- 资助金额:
$ 38.5万 - 项目类别:
Role of Thioredoxin system in regulation of autophagy-apoptosis cross talk in neurons: Uncovering Novel Molecular Interactions.
硫氧还蛋白系统在神经元自噬-凋亡串扰调节中的作用:揭示新的分子相互作用。
- 批准号:
RGPIN-2019-05371 - 财政年份:2022
- 资助金额:
$ 38.5万 - 项目类别:
Discovery Grants Program - Individual