Brain Recovery after Cardiac Arrest with Metabolic Glycoengineered Stem Cells
代谢糖工程干细胞促进心脏骤停后的大脑恢复
基本信息
- 批准号:9979983
- 负责人:
- 金额:$ 33.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-30 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:AdultAlzheimer&aposs DiseaseAreaBrainBrain InjuriesBrain IschemiaCarbohydratesCardiopulmonary ResuscitationCause of DeathCell AdhesionCell Differentiation processCell SurvivalCell TherapyCell-Cell AdhesionCellsClinicalDataDevelopmentDiseaseElectrophysiology (science)FutureGlycocalyxGoalsHeart ArrestHistologyHomingHospitalsHumanHuntington DiseaseIn VitroIncidenceInduced Heart ArrestInjuryInterventionInvestigationIschemiaMagnetic Resonance ImagingMedicalMetabolicMethodsModelingModificationMolecularMonosaccharidesMultiple SclerosisNeurodegenerative DisordersNeurologic DeficitNeurological outcomeNeuronal DifferentiationNeuronal InjuryNeuronsOutcomeParkinson DiseasePharmacologyPolysaccharidesRattusRecoveryRecovery of FunctionRegenerative MedicineReperfusion InjurySafetySialic AcidsSignal PathwaySiteStem cell transplantStrokeSulfhydryl CompoundsSurfaceSurface PropertiesSurvivorsTechniquesTechnologyTherapeuticTimeTranslatingTransplantationTraumaTreatment Efficacyanalogbasebeta cateninbrain repaircell typeclinical applicationclinical translationcostfunctional outcomesimprovedin vivoin vivo Modelinnovationmigrationnatural hypothermianerve injurynerve stem cellnovelnovel strategiesnovel therapeuticsout-of-hospital cardiac arrestpreclinical studyrelating to nervous systemrepairedstem cell differentiationstem cell therapystem cellsstructural glycoproteinsuccesssugar
项目摘要
Project Summary
Cardiac arrest (CA) has an incidence of 359,800 annually. Among survivors of CA, brain injury is the biggest
impediment to functional recovery. Currently, neither pharmacological intervention nor therapeutic
hypothermia can reverse the neural injury caused by CA. Stem cell therapy holds significant promise in the
neuronal repair after brain injury. However, poor viability and integration at the site of injury and lack of efficient
differentiation into the desired cell types hinder clinical applications. E
merging
metabolic glycoengineering
(MGE) technology by modification of surface glycans impacts cell adhesion and differentiation in vitro, however,
has not been investigated in the context of stem cell therapy. Therefore, the overall aim of this proposal is to
apply MGE to cell-based therapies to improve cell adhesion and viability after transplantation and enhance the
treatment efficacy to repair damaged neurons in ischemia brain after CA. The specific aims are:
Aim1: With our novel MGE technique, we hypothesize that a novel glycan-based intervention is able to
promote human neural stem cell (hNSCs) neural differentiation and cell adhesion in vitro. We will develop and
optimize novel thiolated ManNAc analogs with longer alkyl chains, Ac5ManNPropT and Ac5ManNButT, that are
predicted to increase thiol accessibility and promote hNSCs cell adhesion and neural differentiation in vitro.
Aim2: With optimized ManNAc analogs, we hypothesize that treated hNSCs will promote the survival,
distribution, and differentiation of transplanted hNSCs in vivo. We will evaluate the effect of glycoengineered
hNSCs on functional outcome after CA and optimize this cell-based therapy.
Aim 3: With expected improvement in outcome after CA, we hypothesize that the success of the cell-
based intervention is due to improved survival and differentiation of transplanted glycoengineered hNSCs. We
will explore cellular interactions and molecular mechanisms after glycoengineered hNSC transplantation after
CA through Wnt/β-catenin signaling pathways.
The Significance lies in the combination of the MGE technique and stem cell therapy for repairing brain injury
post-CA, optimization of cell-based therapy towards clinical translation, and the expected discovery of the
mechanism underlying improved survival and differentiation after glycoengineered NSC transplantation. The
innovation lies in our innovative hypothesis to modify stem cell surface properties by MGE technology to
improve cell survival and differentiation, our novel and effective MGE method with low cost for modifying surface
glycans of hNSCs, and our use of the MGE technique in important disease in vivo model to develop novel
therapeutic cell-based intervention. Our study will lead to the development of novel therapeutic strategies to
repair brain injury towards future clinical interventions and maximize the benefits of MGE and stem cell therapy
based on the new findings. The use of sugar analog molecules for regenerative medicine and stem cell therapies
will help improve cells based therapy to repair brain injury due to CA, stroke, and trauma, or neurodegenerative
diseases, and have tremendous potential to provide a profound medical advance.
项目摘要
心脏骤停(CA)每年的发病率为359,800。在CA的幸存者中,脑损伤是最大的
阻碍功能恢复。目前,无论是药物干预还是治疗,
低温可逆转CA引起的神经损伤。干细胞治疗在世界范围内具有重要的前景。
脑损伤后的神经元修复。然而,在损伤部位的存活力和整合差以及缺乏有效的
分化成所需的细胞类型阻碍了临床应用。E
合并
代谢糖工程
(MGE)通过修饰表面聚糖的技术在体外影响细胞粘附和分化,然而,
尚未在干细胞治疗的背景下进行研究。因此,本提案的总体目标是
将MGE应用于基于细胞的治疗,以改善移植后的细胞粘附和存活力,并增强
CA后缺血脑损伤神经元修复的治疗效果。具体目标是:
目标1:通过我们的新型MGE技术,我们假设一种新型的基于聚糖的干预能够
促进人神经干细胞(hNSCs)的神经分化和细胞粘附。创新和
优化具有较长烷基链的新型硫醇化ManNAc类似物Ac 5 ManNPropT和Ac 5 ManNButT,
预测增加巯基可接近性并促进体外hNSC细胞粘附和神经分化。
目标2:使用优化的ManNAc类似物,我们假设处理的hNSC将促进存活,
移植的hNSC在体内的分布和分化。我们将评估糖工程的效果
hNSC对CA后功能结果的影响,并优化这种基于细胞的治疗。
目的3:随着CA后结局的预期改善,我们假设细胞的成功-
基于干预的结果是由于移植的糖工程化hNSC的存活和分化改善。我们
将探索糖工程化hNSC移植后的细胞相互作用和分子机制,
CA通过Wnt/β-catenin信号通路。
MGE技术与干细胞治疗相结合对脑损伤修复的意义
后CA,优化基于细胞的治疗向临床转化,以及预期的发现,
糖工程化NSC移植后存活和分化改善的潜在机制。的
创新在于我们的创新假设,即通过MGE技术改变干细胞表面性质,
改善细胞存活和分化,我们新的和有效的低成本的MGE方法用于修饰表面
我们使用MGE技术在重要的疾病体内模型中开发了新的hNSC聚糖,
基于细胞的治疗性干预。我们的研究将导致新的治疗策略的发展,
修复脑损伤,以实现未来临床干预,并最大限度地发挥MGE和干细胞治疗的益处
根据新的发现。糖类似物分子在再生医学和干细胞治疗中的应用
将有助于改善基于细胞的治疗,以修复由于CA,中风和创伤或神经退行性疾病引起的脑损伤
疾病,并有巨大的潜力提供一个深刻的医学进步。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xiaofeng Jia其他文献
Xiaofeng Jia的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xiaofeng Jia', 18)}}的其他基金
Improving Brain Recovery Through Glycoengineering
通过糖工程改善大脑恢复
- 批准号:
10666616 - 财政年份:2022
- 资助金额:
$ 33.8万 - 项目类别:
Stem Cell Surface Modification to Promote Nerve Regeneration
干细胞表面修饰促进神经再生
- 批准号:
10543158 - 财政年份:2021
- 资助金额:
$ 33.8万 - 项目类别:
Stem Cell Surface Modification to Promote Nerve Regeneration
干细胞表面修饰促进神经再生
- 批准号:
10326864 - 财政年份:2021
- 资助金额:
$ 33.8万 - 项目类别:
Brain Recovery after Cardiac Arrest with Metabolic Glycoengineered Stem Cells
代谢糖工程干细胞促进心脏骤停后的大脑恢复
- 批准号:
9791036 - 财政年份:2018
- 资助金额:
$ 33.8万 - 项目类别:
Brain Recovery after Cardiac Arrest with Metabolic Glycoengineered Stem Cells
代谢糖工程干细胞促进心脏骤停后的大脑恢复
- 批准号:
10201773 - 财政年份:2018
- 资助金额:
$ 33.8万 - 项目类别:
Brain Recovery after Cardiac Arrest with Metabolic Glycoengineered Stem Cells
代谢糖工程干细胞促进心脏骤停后的大脑恢复
- 批准号:
10434716 - 财政年份:2018
- 资助金额:
$ 33.8万 - 项目类别:
Brain Monitoring and Therapeutic Hypothermia after Cardiac Arrest
心脏骤停后的脑部监测和低温治疗
- 批准号:
8831135 - 财政年份:2014
- 资助金额:
$ 33.8万 - 项目类别:
Brain Monitoring and Therapeutic Hypothermia after Cardiac Arrest
心脏骤停后的脑部监测和低温治疗
- 批准号:
9035424 - 财政年份:2014
- 资助金额:
$ 33.8万 - 项目类别:
Brain Monitoring and Therapeutic Hypothermia after Cardiac Arrest
心脏骤停后的脑部监测和低温治疗
- 批准号:
8842190 - 财政年份:2014
- 资助金额:
$ 33.8万 - 项目类别:
Brain Monitoring and Therapeutic Hypothermia after Cardiac Arrest
心脏骤停后的脑部监测和低温治疗
- 批准号:
8481969 - 财政年份:2013
- 资助金额:
$ 33.8万 - 项目类别: