Biodegradable Matrices for Bone Healing
用于骨愈合的可生物降解基质
基本信息
- 批准号:9987102
- 负责人:
- 金额:$ 8.27万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-11-01 至 2021-05-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAllograftingArchitectureAutologous TransplantationBone GrowthBone MarrowBone MatrixBone RegenerationBone TissueBone TransplantationBuffersCalciumCalvariaCell AdhesionCell Differentiation processCell ProliferationCellsClinicClinicalDefectDepositionDevelopmentEventGeometryGlycolatesGrowth FactorHumanImplantIn SituIn VitroInfiltrationIonsLightMechanicsMediatingMesenchymal Stem CellsMineralsModelingNatural regenerationNutrientOrthopedic ProceduresOrthopedicsOryctolagus cuniculusOsteoblastsOsteogenesisPerformancePhasePhenotypePolymersPorosityProductionPropertyPublicationsRattusReconstructive Surgical ProceduresResearchResearch Project GrantsSiteSolidStructureSurfaceSystemTestingTimeTissue EngineeringTissuesTransplanted tissueVascularizationVertebral columnWeight-Bearing statebasebiomaterial compatibilitybonebone healingbone repair materialcalcium phosphateclinical applicationcortical bonecraniofacialdesignimplantationimprovedin vivoinnovationmechanical propertiesosteoblast differentiationpoly(lactic acid)polycaprolactoneprogramsreconstructionrepairedsample fixationscaffoldskeletalskeletal disorderstem cell differentiationsubcutaneoussubstantia spongiosasuccessulna
项目摘要
Project Summary/Abstract: Biodegradable Matrices for Bone Healing
More than 6.5 million orthopaedic procedures require the use of grafts to repair bone defects every year in the
US alone. Repair of large bone defects is a challenging problem in reconstructive surgery. Several bone graft
options including autografts, allografts, and biodegradable porous scaffolds have been routinely used in the clinics
with limited success. For example, tissue ingrowth is limited to the surface in bone tissue engineering scaffolds
(BTE) because of poor access to cells and nutrients within scaffolds. The porosity that is necessary to support
tissue ingrowth in BTE scaffolds results in sub-optimal mechanical properties of these materials for orthopedic
applications. Therefore, there is a need to develop BTE scaffolds which will fulfill the requirements of both porosity
necessary for tissue ingrowth and vascularization, and optimal mechanical properties necessary for load bearing.
In addition, osteoconductive, osteoinductive, and osteointegrative properties will improve the success of bone
graft materials. Our ongoing studies and publications have demonstrated the feasibility of developing
mechanically strong non-porous composite scaffolds from materials with differential degradation profiles that
result in the progressive formation of interconnected pores within the composite material allowing tissue ingrowth
over a period of time (1, 2). Likewise, using spirally structured scaffolds we have shown that geometry can be
designed to promote cell proliferation, infiltration, and homogenous mineralized matrix deposition throughout the
scaffold architecture (3-6). These mechanically stable initially non-porous scaffolds were able to support bone
ingrowth due to evolving porous architecture via matrix degradation in rat calvarial defects and rabbit segmental
bone defects without inclusion of growth factors and cells. Based on these findings we hypothesize that by altering
scaffold composition and geometry we will be able to create BTE scaffolds with programmable mechanical
strength and porous structure to better serve the bone healing requirements at load bearing sites. The research
project will have the four following phases: Aim 1: To optimize material composition and geometry to achieve
necessary mechanical stability and progressive degradation for load-bearing bone-healing applications. Aim 2:
To understand the effect of scaffold degradation on human bone marrow derived mesenchymal stem cell (MSCs)
adhesion, infiltration, proliferation, differentiation, and mineralized matrix production. Aim 3: To assess in vivo
biocompatibility and dynamic pore formation within the scaffolds. Aim 4: To evaluate the bone healing ability of
scaffolds with different geometry and mechanical strength in a critical size segmental defect in the rabbit ulna.
项目摘要/摘要:用于骨愈合的可生物降解基质
项目成果
期刊论文数量(28)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Nanomaterials/Nanocomposites for Osteochondral Tissue.
- DOI:10.1007/978-3-319-76711-6_4
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Ohan S. Manoukian;Connor Dieck;T. Milne;C. Dealy;Swetha Rudraiah;S. Kumbar
- 通讯作者:Ohan S. Manoukian;Connor Dieck;T. Milne;C. Dealy;Swetha Rudraiah;S. Kumbar
Decellularized extracellular matrix biomaterials for regenerative therapies: Advances, challenges and clinical prospects.
- DOI:10.1016/j.bioactmat.2023.09.017
- 发表时间:2024-02
- 期刊:
- 影响因子:18.9
- 作者:
- 通讯作者:
Amorphous silica fiber matrix biomaterials: An analysis of material synthesis and characterization for tissue engineering.
- DOI:10.1016/j.bioactmat.2022.04.002
- 发表时间:2023-01
- 期刊:
- 影响因子:18.9
- 作者:Kim, Hyun S.;Kumbar, Sangamesh G.;Nukavarapu, Syam P.
- 通讯作者:Nukavarapu, Syam P.
Fabrication of polylactic acid (PLA)-based porous scaffold through the combination of traditional bio-fabrication and 3D printing technology for bone regeneration.
- DOI:10.1016/j.colsurfb.2020.111420
- 发表时间:2021-01
- 期刊:
- 影响因子:0
- 作者:Zhou X;Zhou G;Junka R;Chang N;Anwar A;Wang H;Yu X
- 通讯作者:Yu X
Polymeric ionically conductive composite matrices and electrical stimulation strategies for nerve regeneration: In vitro characterization.
聚合物电离导电复合矩阵和神经再生的电刺激策略:体外表征。
- DOI:10.1002/jbm.b.34272
- 发表时间:2019-08
- 期刊:
- 影响因子:0
- 作者:Manoukian OS;Stratton S;Arul MR;Moskow J;Sardashti N;Yu X;Rudraiah S;Kumbar SG
- 通讯作者:Kumbar SG
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sangamesh Gurappa Kumbar其他文献
Sangamesh Gurappa Kumbar的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sangamesh Gurappa Kumbar', 18)}}的其他基金
Polysaccharide putty formulations for tissue regeneration
用于组织再生的多糖腻子配方
- 批准号:
10627055 - 财政年份:2023
- 资助金额:
$ 8.27万 - 项目类别:
Engineered Matrices with Electrical and Chemical Stimulation for Peripheral Nerve Repair
用于周围神经修复的具有电和化学刺激的工程基质
- 批准号:
10592729 - 财政年份:2022
- 资助金额:
$ 8.27万 - 项目类别:
相似海外基金
Establishment of novel osteochondral allografting combined with growth factor- collagen-binding domain fusion technology
新型同种异体骨软骨移植联合生长因子-胶原蛋白结合域融合技术的建立
- 批准号:
26462277 - 财政年份:2014
- 资助金额:
$ 8.27万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Translating PTH Therapy as an Adjuvant for Structural Allografting
将 PTH 疗法转化为结构性同种异体移植的佐剂
- 批准号:
8344380 - 财政年份:2012
- 资助金额:
$ 8.27万 - 项目类别:
Composite Allografting for Promoting Survival of Corneal Transplants
复合同种异体移植促进角膜移植的存活
- 批准号:
7878675 - 财政年份:2009
- 资助金额:
$ 8.27万 - 项目类别:
Composite Allografting for Promoting Survival of Corneal Transplants
复合同种异体移植促进角膜移植的存活
- 批准号:
7677758 - 财政年份:2009
- 资助金额:
$ 8.27万 - 项目类别:
Augmenting Antitumor Immunity after Allografting
增强同种异体移植后的抗肿瘤免疫力
- 批准号:
7466112 - 财政年份:2008
- 资助金额:
$ 8.27万 - 项目类别:
Augmenting Antitumor Immunity after Allografting
增强同种异体移植后的抗肿瘤免疫力
- 批准号:
8010394 - 财政年份:2008
- 资助金额:
$ 8.27万 - 项目类别:
Augmenting Antitumor Immunity after Allografting
增强同种异体移植后的抗肿瘤免疫力
- 批准号:
8208131 - 财政年份:2008
- 资助金额:
$ 8.27万 - 项目类别:
Augmenting Antitumor Immunity after Allografting
增强同种异体移植后的抗肿瘤免疫力
- 批准号:
7575273 - 财政年份:2008
- 资助金额:
$ 8.27万 - 项目类别:
Augmenting Antitumor Immunity after Allografting
增强同种异体移植后的抗肿瘤免疫力
- 批准号:
7765518 - 财政年份:2008
- 资助金额:
$ 8.27万 - 项目类别: