EASI: Shear Wave Elastography Assessment For Predicting Success Of Labor Induction
EASI:用于预测引产成功的剪切波弹性成像评估
基本信息
- 批准号:9981768
- 负责人:
- 金额:$ 56.14万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-07 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:AcousticsAlgorithmsBiomechanicsCervicalCervical DilatationsCervix UteriCesarean sectionCharacteristicsClinicalClinical assessmentsCollagenComplexCross-Sectional StudiesDataDevelopmentDilatation - actionDiscipline of obstetricsEpithelial Cell Aggregation and SeparationEvaluationFeedbackFrequenciesFutureGestational AgeIndividualInduced LaborInterventionLeadLengthMeasurableMeasurementMeasuresMedicalMethodsMorbidity - disease rateMothersNulliparityObservational StudyOutcomePredictive ValuePregnancyPregnant WomenProcessPropertyProspective StudiesPublic HealthReadinessRecording of previous eventsReproducibilityResearch DesignResourcesSourceSpeedStructureTechniquesTimeTissuesVaginaVaginal delivery procedureWomanbaseclinical translationdata acquisitiondigitalelastographyexpectationimprovedneonatepersonalized approachquantitative ultrasoundsuccess
项目摘要
Project Summary
The most recent data indicate that 1 in 4 pregnant women in the U.S. undergoes induction of labor (IOL),
making this one of today's most common obstetrical interventions. Yet it is one of the least predictable with respect
to outcome (vaginal vs. cesarean delivery) and one of the least well studied with respect to best practice. The
frequency of IOL has increased in recent years, paralleled by an increase in the number of cesarean deliveries. The
relationship between IOL and cesarean delivery is not straightforward, but it is clear that both interventions have
become significant public health issues because of their associated increased resource utilization and morbidity.
Specifically, higher utilization is seen in women who undergo labor induction and cesarean delivery is associated
with higher morbidity (immediate and future) for both mother and neonate.
Cervical readiness is crucial to IOL success. This is logical since the cervix must open for the baby to deliver.
Given this, it is almost unbelievable that today's practitioner relies on a subjective clinical assessment of cervical
"favorability" for important decisions about who should undergo IOL or, if delivery is medically indicated, whose
cervix needs ripening (softening) before IOL and what type of ripening would be best. To assess cervical favorability,
the practitioner assigns points to cervical characteristics such as dilatation, softness, and length as assessed per
vaginal exam. The points are combined into a summative Bishop score (BS), which is supposed to predict success
of IOL. Practitioners often complain about the subjectivity and lack of reproducibility of the BS, but many do not
even know about another significant issue: the BS was developed more than 50 years ago for a purpose that
today is no longer relevant. Specifically, it was developed to predict time to delivery in a woman with a history of
vaginal delivery at full term gestation in the current pregnancy. This information was eventually leveraged to imply
success from IOL in these women. Today we know that the chance of success in such a woman is so high that her
cervical exam is almost irrelevant. But the BS is still used on a daily basis in obstetrical practice to predict the
chance of vaginal delivery in a woman at any gestational age who has never before had a baby. Unsurprisingly,
this re-purposed BS is a poor predictor of IOL success.
That said, it certainly makes sense that characteristics such as cervical dilatation and softness would predict how
well the cervix will open because these are physical manifestations of underlying biomechanical characteristics that
dictate tissue function. Quantitative ultrasound (QUS) techniques can provide objective, measurable information
about tissue properties such as softness, which means that they could contribute to a personalized metric to predict
approach to, and expectations for, IOL. Toward that end, this proposal describes a prospective, observational,
cross-sectional study designed to evaluate whether QUS techniques can improve prediction of IOL success.
项目摘要
最新数据表明,美国每4名孕妇中就有1名接受引产(IOL),
使其成为当今最常见的产科干预措施之一。然而,这是最不可预测的尊重之一
结果(阴道分娩与剖腹产)和最佳实践方面研究最少的一个。的
近年来,随着剖腹产数量的增加,IOL的使用频率增加。的
人工晶状体和剖腹产之间的关系并不直接,但很明显,这两种干预措施都具有
由于其相关的资源利用率和发病率增加,因此成为重大的公共卫生问题。
特别是,在接受引产和剖宫产的妇女中,
母亲和新生儿的发病率(近期和未来)较高。
宫颈准备对IOL成功至关重要。这是合乎逻辑的,因为子宫颈必须打开才能分娩。
鉴于此,几乎令人难以置信的是,今天的从业者依赖于颈椎病的主观临床评估。
“可选择性”,指关于谁应该接受IOL的重要决定,或者如果有医学指征,
子宫颈在IOL前需要成熟(软化),什么类型的成熟最好。为了评估宫颈可切除性,
医生根据评估的宫颈特征,如扩张、柔软度和长度,
这些分数被合并成一个总结性的Bishop评分(BS),它被认为是预测成功的
的IOL。从业者经常抱怨BS的主观性和缺乏可重复性,但许多人并不这样认为。
我甚至知道另一个重要的问题:BS是在50多年前开发的,
今天已经不重要了具体地说,它被开发来预测有以下病史的妇女的分娩时间:
本次妊娠足月阴道分娩。这些信息最终被用来暗示
在这些女性中获得IOL的成功。今天我们知道,这样的女性成功的机会如此之高,以至于她
子宫颈检查几乎无关紧要但是,在产科实践中,BS仍然每天用于预测
在任何孕龄从未有过孩子的妇女阴道分娩的机会。不出意外的是,
这种重新利用的BS是IOL成功的不良预测器。
也就是说,它肯定是有道理的,如宫颈扩张和柔软的特点将预测如何
子宫颈会打开,因为这是潜在的生物力学特征的物理表现,
决定组织功能。定量超声(QUS)技术可以提供客观、可测量的信息
关于组织特性,如柔软度,这意味着它们可以有助于预测个性化的指标
IOL的方法和期望。为此,本提案描述了一个前瞻性的、观察性的、
横断面研究,旨在评价QUS技术是否可以改善IOL成功的预测。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Helen Feltovich其他文献
Helen Feltovich的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Helen Feltovich', 18)}}的其他基金
A Multi-Modality, Multi-Scale Approach to Understanding Parturition
理解分娩的多模态、多尺度方法
- 批准号:
10434882 - 财政年份:2013
- 资助金额:
$ 56.14万 - 项目类别:
A Multi-Modality, Multi-Scale Approach to Understanding Parturition
理解分娩的多模态、多尺度方法
- 批准号:
10200861 - 财政年份:2013
- 资助金额:
$ 56.14万 - 项目类别:
Monitoring Changes in Cervical Microstructure During Pregnancy
监测怀孕期间宫颈微观结构的变化
- 批准号:
9199589 - 财政年份:2013
- 资助金额:
$ 56.14万 - 项目类别:
Monitoring Changes in Cervical Microstructure During Pregnancy
监测怀孕期间宫颈微观结构的变化
- 批准号:
8979705 - 财政年份:2013
- 资助金额:
$ 56.14万 - 项目类别:
Monitoring Changes in Cervical Microstructure During Pregnancy
监测怀孕期间宫颈微观结构的变化
- 批准号:
8439233 - 财政年份:2013
- 资助金额:
$ 56.14万 - 项目类别:
Monitoring Changes in Cervical Microstructure During Pregnancy
监测怀孕期间宫颈微观结构的变化
- 批准号:
8782578 - 财政年份:2013
- 资助金额:
$ 56.14万 - 项目类别:
Monitoring Changes in Cervical Microstructure During Pregnancy
监测怀孕期间宫颈微观结构的变化
- 批准号:
8605088 - 财政年份:2013
- 资助金额:
$ 56.14万 - 项目类别:
Quantifying Cervical Softness with Elasticity Imaging
通过弹性成像量化宫颈柔软度
- 批准号:
8117095 - 财政年份:2010
- 资助金额:
$ 56.14万 - 项目类别:
Quantifying Cervical Softness with Elasticity Imaging
通过弹性成像量化宫颈柔软度
- 批准号:
7991724 - 财政年份:2010
- 资助金额:
$ 56.14万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 56.14万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 56.14万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 56.14万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 56.14万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 56.14万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 56.14万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 56.14万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 56.14万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 56.14万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 56.14万 - 项目类别:
Continuing Grant