Robust methods for missing data in electronic health records-based studies
基于电子健康记录的研究中缺失数据的稳健方法
基本信息
- 批准号:10181873
- 负责人:
- 金额:$ 56.68万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-12 至 2025-03-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAttentionCaringClinicalCohort StudiesComplexDataData ProvenanceElectronic Health RecordEligibility DeterminationEthicsFaceHealth PersonnelHealth systemLiteratureLongitudinal StudiesMeasurementMethodologyMethodsModelingObservational StudyOutcomePatient CarePatientsProbabilityResearchResearch DesignResearch PersonnelSamplingSelection BiasSeriesStatistical MethodsSystemTechniquesTimeWeightbariatric surgerybasecohortcost effectivedesignepidemiology studyexperienceflexibilityinnovationnovelopportunity costprospectivepublic health researchrandomized trialsemiparametrictool
项目摘要
PROJECT SUMMARY
Electronic health record (EHR) data represent a huge opportunity for cost-efficient clinical and public health
research, especially when a randomized trial or a prospective observational study is not feasible or ethical. EHR
systems, however, are typically developed to support clinical and/or billing activities. As such, substantial care
is needed when using EHR data to address a particular scientific question. In this, an important potential threat
to validity is missing data. Moreover, since EHR data are not collected for any particular research question, it
will often be the case that measurements that are critical to answering the question will be unavailable in the
record of some patients. This, in turn, requires researchers to contend with the potential for selection bias and
compromised generalizability.
Towards addressing issues of missing data in an EHR, researchers could, in principle, appeal to a vast
statistical literature and use standard methods such as multiple imputation (MI), inverse-probability weighting
(IPW) or doubly- robust (DR) estimation. These methods, however, have generally been developed outside of the
EHR context. As such, they typically fail to acknowledge the complexity of the EHR data, in particular the many
decisions made by patients and health care providers that give rise to `complete data' in the EHR, known to as
the data provenance. Because of the disconnect between this complexity and the settings for which most missing
data methods are developed, the application of standard missing data methods to EHR-based studies will often
fail to resolve selection bias and generalizability will remain compromised.
Unfortunately, in contrast to confounding bias, very little attention has been paid to developing methods for
missing data that are specifically tailored to the complexity of EHR-based studies. We will begin to address this
gap by developing, implementing and evaluating a suite of novel, innovative statistical tools including: Aim 1: A
unified framework for robust causal inference in unmatched and matched EHR-based cohort studies with missing
confounder data; Aim 2: A formal, robust framework for causal inference in emulated target trials based on EHR
data; Aim 3: A novel blended analysis framework for missing data in EHR-based studies that combines MI and
IPW in an innovative and unique way; Aim 4: A novel double-sampling strategy for when the EHR data are
suspected to be missing-not-at-random.
The proposed aims are motivated by challenges the investigative team has faced in a series of EHR-based
studies of long-term outcomes among patients who have undergone bariatric surgery. Throughout this research,
we will use data from one of these studies, the DURABLE study, which has rich demographic and longitudinal
clinical information from three Kaiser Permanente health systems on ≈45,000 patients who underwent bariatric
surgery between 1997-2015, as well as on ≈1,636,000 non-surgical enrollees during that time period.
项目摘要
电子健康记录(EHR)数据为具有成本效益的临床和公共卫生提供了巨大的机会
研究,特别是当随机试验或前瞻性观察性研究不可行或不符合伦理时。EHR
然而,系统通常被开发为支持临床和/或计费活动。因此,实质性护理
当使用EHR数据来解决特定的科学问题时,这是必要的。在这方面,一个重要的潜在威胁
是缺少数据。此外,由于EHR数据不是为任何特定的研究问题收集的,
通常情况下,对于回答问题至关重要的测量结果在
一些病人的记录。这反过来又要求研究人员应对潜在的选择偏差,
妥协的普遍性。
为了解决EHR中缺失数据的问题,研究人员原则上可以呼吁广泛的
统计文献,并使用标准方法,如多重插补(MI),逆概率加权
(IPW)或双稳健(DR)估计。然而,这些方法通常是在非专利领域开发的。
EHR上下文。因此,他们通常没有认识到EHR数据的复杂性,特别是许多
患者和医疗保健提供者做出的决定,这些决定在EHR中产生了“完整数据”,称为
数据来源。由于这种复杂性与大多数缺失的设置之间的脱节,
数据方法的发展,标准的缺失数据方法的应用,以EHR为基础的研究,往往
如果不能解决选择偏差,普遍性将继续受到损害。
不幸的是,与混杂偏倚相反,很少有人注意开发方法,
缺少专门针对基于EHR的研究的复杂性的数据。我们将开始解决这个问题
通过开发、实施和评估一套新颖、创新的统计工具,消除差距,包括:
在缺失的非匹配和匹配EHR队列研究中进行稳健因果推断的统一艾德框架
混杂数据;目标2:基于EHR的模拟靶试验中因果推断的正式,强大的框架
数据;目标3:一种新的混合分析框架,用于基于EHR的研究中缺失的数据,
IPW以创新和独特的方式;目标4:一种新颖的双采样策略,当EHR数据
疑似非随机失踪
拟议的目标是出于调查小组在一系列基于电子健康记录的
在接受减肥手术的患者中进行的长期结局研究。在整个研究过程中,
我们将使用来自其中一项研究的数据,即DURABLE研究,该研究具有丰富的人口统计学和纵向数据,
来自三个Kaiser Permanente卫生系统的145,000名接受减肥治疗的患者的临床信息
1997年至2015年期间的手术,以及在此期间的1,636,000名非手术登记者。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SEBASTIEN HANEUSE其他文献
SEBASTIEN HANEUSE的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SEBASTIEN HANEUSE', 18)}}的其他基金
Robust methods for missing data in electronic health records-based studies
基于电子健康记录的研究中缺失数据的稳健方法
- 批准号:
10390382 - 财政年份:2021
- 资助金额:
$ 56.68万 - 项目类别:
Robust methods for missing data in electronic health records-based studies
基于电子健康记录的研究中缺失数据的稳健方法
- 批准号:
10589133 - 财政年份:2021
- 资助金额:
$ 56.68万 - 项目类别:
Clustered semi-competing risks analysis in quality of end-of-life care studies
临终关怀研究质量中的聚类半竞争风险分析
- 批准号:
8612275 - 财政年份:2014
- 资助金额:
$ 56.68万 - 项目类别:
Clustered semi-competing risks analysis in quality of end-of-life care studies
临终关怀研究质量中的聚类半竞争风险分析
- 批准号:
8805834 - 财政年份:2014
- 资助金额:
$ 56.68万 - 项目类别:
Design and Inference for Hybrid Ecological Studies
混合生态研究的设计和推理
- 批准号:
7434489 - 财政年份:2007
- 资助金额:
$ 56.68万 - 项目类别:
Design and Inference for Hybrid Ecological Studies
混合生态研究的设计和推理
- 批准号:
7626310 - 财政年份:2007
- 资助金额:
$ 56.68万 - 项目类别:
Design and Inference for Hybrid Ecological Studies
混合生态研究的设计和推理
- 批准号:
7185366 - 财政年份:2007
- 资助金额:
$ 56.68万 - 项目类别:
相似国自然基金
多模态超声VisTran-Attention网络评估早期子宫颈癌保留生育功能手术可行性
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
Ultrasomics-Attention孪生网络早期精准评估肝内胆管癌免疫治疗的研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
相似海外基金
Development of social attention indicators of emerging technologies and science policies with network analysis and text mining
利用网络分析和文本挖掘开发新兴技术和科学政策的社会关注指标
- 批准号:
24K16438 - 财政年份:2024
- 资助金额:
$ 56.68万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Improving Flexible Attention to Numerical and Spatial Magnitudes in Young Children
提高幼儿对数字和空间大小的灵活注意力
- 批准号:
2410889 - 财政年份:2024
- 资助金额:
$ 56.68万 - 项目类别:
Continuing Grant
The Information-Attention Tradeoff: Toward an Understanding of the Fundamentals of Online Attention
信息与注意力的权衡:了解在线注意力的基本原理
- 批准号:
2343858 - 财政年份:2024
- 资助金额:
$ 56.68万 - 项目类别:
Continuing Grant
The everyday learning opportunities of young children with attention and motor difficulties: From understanding constraints to reshaping intervention
注意力和运动困难幼儿的日常学习机会:从理解限制到重塑干预
- 批准号:
MR/X032922/1 - 财政年份:2024
- 资助金额:
$ 56.68万 - 项目类别:
Fellowship
Towards a cognitive process model of how attention and choice interact
建立注意力和选择如何相互作用的认知过程模型
- 批准号:
DP240102605 - 财政年份:2024
- 资助金额:
$ 56.68万 - 项目类别:
Discovery Projects
DDRIG in DRMS: Communicating risks in a sensational media environment-Using short video multimodal features to attract attention and reduce psychological reactance for persuasion
DRMS中的DDRIG:耸人听闻的媒体环境中沟通风险——利用短视频多模态特征吸引注意力,减少说服心理抵触
- 批准号:
2343506 - 财政年份:2024
- 资助金额:
$ 56.68万 - 项目类别:
Standard Grant
Assessing the Influence of Reading Fiction on Multiple Tests of Attention
评估阅读小说对注意力多重测试的影响
- 批准号:
24K16033 - 财政年份:2024
- 资助金额:
$ 56.68万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
CAREER: Designing Ultra-Energy-Efficient Intelligent Hardware with On-Chip Learning, Attention, and Inference
职业:设计具有片上学习、注意力和推理功能的超节能智能硬件
- 批准号:
2336012 - 财政年份:2023
- 资助金额:
$ 56.68万 - 项目类别:
Continuing Grant
CPS: Small: Brain-Inspired Memorization and Attention for Intelligent Sensing
CPS:小:智能传感的受大脑启发的记忆和注意力
- 批准号:
2312517 - 财政年份:2023
- 资助金额:
$ 56.68万 - 项目类别:
Standard Grant
CAREER: Understanding the Relationship of Covert and Overt Attention Using Concurrent EEG and Eye Tracking
职业:使用并发脑电图和眼动追踪了解隐性注意力和显性注意力的关系
- 批准号:
2345898 - 财政年份:2023
- 资助金额:
$ 56.68万 - 项目类别:
Continuing Grant