Neural circuit theory and trained recurrent network modeling of rapid learning

神经回路理论与快速学习的训练循环网络建模

基本信息

  • 批准号:
    9983227
  • 负责人:
  • 金额:
    $ 22.33万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-09-15 至 2023-07-31
  • 项目状态:
    已结题

项目摘要

Humans have remarkable ability to acquire a rich repertoire of concepts stored in semantic memory, which can be deplored in “learning to lean” that facilitates rapid new learning or even one-shot learning. Nonhuman animals are also endowed with “learning to learn”; on the other hand, there is evidence that primates but not rodents possess this mental capability. The underlying brain mechanisms are completely unknown and represent a widely open question at the frontier of Neuroscience today. The present computational project, in conjecture with the experimental projects of this application, has the primary goal of elucidating the neural circuit basis of rapid learning. Progress is this research direction will represent a major step forward in bridging nonhuman primate and human neuroscientific understanding of higher cognition. Our modeling approach integrates large-scale circuit modeling of primate brain based on measured mesoscopic connectivity and training recurrent neural networks to perform cognitive tasks. Together with the proposed experiments in this application, we will develop tools to describe and elucidate neural population dynamics in single trials, which is crucial for neurophysiological analysis of rapid learning (even one-shot learning) without averaging over many repetitive trials in a steady state situation. The main hypothesis is that learning to learn depends on the formation of an abstraction of sensori-motor representations, such as that of task structure or “schema”, which is manifested in a shift of neural representation from the hippocampus to the prefrontal cortex; this conceptual representation enables rapid future learning by efficient changes of connection weights within a low dimensional subspace. This hypothesis will be tested using the state space analysis and dimensionality reduction of the recurrent neural network dynamics. Aim 1 will to be to advance a mesoscopic connectivity-based multi-regional neural network model for rapid learning in categorization, flexible sensori-motor mapping and object-location association. The model will be systematically tested and validated by comparison with behavioral data from category learning and associative learning tasks. Aim 2 will be to uncover neural population dynamics and circuit mechanism of rapid learning in single trials, using state-space analysis and identifying a subspace of neural population dynamics as well as a subspace of connection weights that may correspond to the formation of semantic memory. Aim 3 will be to dissect the differential roles of HPC, PFC, PPC and their dynamical interactions underlying rapid learning, by simulating “area lesion” at different time points of a learning process. A spiking network version of our model will enable us to uncover inter-areal dynamical interactions and their role in rapid learning. Advances in this area would not only be important for the Neuroscience of learning and memory, but also have potentially major implications for the future development of AI, and for shedding insights into the brain mechanism of deficits in semantic memory, which is at the core of fronto-temporal dementia.
人类在获取存储在语义记忆中的丰富概念方面具有非凡的能力,

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

XIAO-JING WANG其他文献

XIAO-JING WANG的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('XIAO-JING WANG', 18)}}的其他基金

Models of computation in multi-regional circuits with thalamus in the middle
丘脑位于中部的多区域电路的计算模型
  • 批准号:
    10546516
  • 财政年份:
    2022
  • 资助金额:
    $ 22.33万
  • 项目类别:
Models of computation in multi-regional circuits with thalamus in the middle
丘脑位于中部的多区域电路的计算模型
  • 批准号:
    10294405
  • 财政年份:
    2022
  • 资助金额:
    $ 22.33万
  • 项目类别:
CRCNS: Gradients of receptors underlying distributed cognitive functions
CRCNS:分布式认知功能的受体梯度
  • 批准号:
    10251904
  • 财政年份:
    2019
  • 资助金额:
    $ 22.33万
  • 项目类别:
CRCNS: Gradients of receptors underlying distributed cognitive functions
CRCNS:分布式认知功能的受体梯度
  • 批准号:
    9916911
  • 财政年份:
    2019
  • 资助金额:
    $ 22.33万
  • 项目类别:
Neural circuit theory and trained recurrent network modeling of rapid learning
神经回路理论与快速学习的训练循环网络建模
  • 批准号:
    10456065
  • 财政年份:
    2018
  • 资助金额:
    $ 22.33万
  • 项目类别:
2010 Neurobiology of Cognition Gordon Research Conference
2010年认知神经生物学戈登研究会议
  • 批准号:
    7996710
  • 财政年份:
    2010
  • 资助金额:
    $ 22.33万
  • 项目类别:
Recurrent Neual Circuit Basis of Time Integration and Decision Making
时间积分和决策的循环神经电路基础
  • 批准号:
    7929323
  • 财政年份:
    2009
  • 资助金额:
    $ 22.33万
  • 项目类别:
Recurrent Neual Circuit Basis of Time Integration and Decision Making
时间积分和决策的循环神经电路基础
  • 批准号:
    7686848
  • 财政年份:
    2007
  • 资助金额:
    $ 22.33万
  • 项目类别:
Recurrent Neual Circuit Basis of Time Integration and Decision Making
时间积分和决策的循环神经电路基础
  • 批准号:
    7369653
  • 财政年份:
    2007
  • 资助金额:
    $ 22.33万
  • 项目类别:
Recurrent Neual Circuit Basis of Time Integration and Decision Making
时间积分和决策的循环神经电路基础
  • 批准号:
    7496098
  • 财政年份:
    2007
  • 资助金额:
    $ 22.33万
  • 项目类别:

相似海外基金

The earliest exploration of land by animals: from trace fossils to numerical analyses
动物对陆地的最早探索:从痕迹化石到数值分析
  • 批准号:
    EP/Z000920/1
  • 财政年份:
    2025
  • 资助金额:
    $ 22.33万
  • 项目类别:
    Fellowship
Animals and geopolitics in South Asian borderlands
南亚边境地区的动物和地缘政治
  • 批准号:
    FT230100276
  • 财政年份:
    2024
  • 资助金额:
    $ 22.33万
  • 项目类别:
    ARC Future Fellowships
The function of the RNA methylome in animals
RNA甲基化组在动物中的功能
  • 批准号:
    MR/X024261/1
  • 财政年份:
    2024
  • 资助金额:
    $ 22.33万
  • 项目类别:
    Fellowship
Ecological and phylogenomic insights into infectious diseases in animals
对动物传染病的生态学和系统发育学见解
  • 批准号:
    DE240100388
  • 财政年份:
    2024
  • 资助金额:
    $ 22.33万
  • 项目类别:
    Discovery Early Career Researcher Award
RUI:OSIB:The effects of high disease risk on uninfected animals
RUI:OSIB:高疾病风险对未感染动物的影响
  • 批准号:
    2232190
  • 财政年份:
    2023
  • 资助金额:
    $ 22.33万
  • 项目类别:
    Continuing Grant
RUI: Unilateral Lasing in Underwater Animals
RUI:水下动物的单侧激光攻击
  • 批准号:
    2337595
  • 财政年份:
    2023
  • 资助金额:
    $ 22.33万
  • 项目类别:
    Continuing Grant
A method for identifying taxonomy of plants and animals in metagenomic samples
一种识别宏基因组样本中植物和动物分类的方法
  • 批准号:
    23K17514
  • 财政年份:
    2023
  • 资助金额:
    $ 22.33万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Analysis of thermoregulatory mechanisms by the CNS using model animals of female-dominant infectious hypothermia
使用雌性传染性低体温模型动物分析中枢神经系统的体温调节机制
  • 批准号:
    23KK0126
  • 财政年份:
    2023
  • 资助金额:
    $ 22.33万
  • 项目类别:
    Fund for the Promotion of Joint International Research (International Collaborative Research)
Using novel modelling approaches to investigate the evolution of symmetry in early animals.
使用新颖的建模方法来研究早期动物的对称性进化。
  • 批准号:
    2842926
  • 财政年份:
    2023
  • 资助金额:
    $ 22.33万
  • 项目类别:
    Studentship
Study of human late fetal lung tissue and 3D in vitro organoids to replace and reduce animals in lung developmental research
研究人类晚期胎儿肺组织和 3D 体外类器官在肺发育研究中替代和减少动物
  • 批准号:
    NC/X001644/1
  • 财政年份:
    2023
  • 资助金额:
    $ 22.33万
  • 项目类别:
    Training Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了